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ABSTRACT 

This research augments formal languages with the machinery necessary to describe 
labelled combinatorial objects surh as trees, permutations, and networks. These objects 
typically have requirements for their labels (trees, for example, can be equivalent under 
permutation of subtrees) that make certain lnbellings invalid or redundant. To deal with 
this problem, formal languages .arc augmented with partial orders—derived strings have 
partial orders specifying acceptable labcllings, and productions of the grammar contain 
fragments of partial orders. The traditional rewrite step in a derivation is now coupled 
with a substitution that joins two partial orders. 

The most attractive feature of this method of describing combinatorial objects is the 
direct translation to generating functions. Treating the grammar of an ordinary formal 
language as a set of equations and then solving these equations yields an enumerating 
generating function. This is still true of labelled formal languages although the equations 
arc usually differential rather than rational or algebraic. 

There are two promising applications for labelled formal languages. In the analysis 
of algorithms one often identifies combinatorial quantities that can be described with la- 
belled formal languages and, using the translation mentioned above, these quantities can be 
easily computed. The other application uses labelled formal languages to control a general- 
purpose system for the ranking, sequencing, and selection of combinatorial objects. Both 
of these applications demonstrate the value of labelled formal languages as a descriptive 
and analytic tool. 
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CHAPTER 1 

INTRODUCTION 

The remarkably simple concept of a grammar has led to considerable clarity in the 
development of computer science. 

Definition. A grammar is a tour-tuple (T, iV, .S, P) consisting of 

1) a terminal alphabet T (usually small letters); 

2) a nonterminal alphabet N (usually capital letters); 

3) a start symbol S e N; 

4) a set of productions P. 

The heart of a grammar is item 4, the set of productions that guide the generation of 
strings. 

Definition. A production is a rewrite rule with two strings over the alphabet TUN. 
The left hand string is separated from the right hand string by an arrow, for example, 
AD -» cDeF. 

Definition. A derivation step consists of matching a substring with the left hand 
string of a production and then rewriting it with the right hand string. 

Definition. A string is derived by a grammar if it is possible to obtain the string 
from the start symbol of the grammar with a finite number of derivation steps. 

In the remainder of this work, >*rammars will always be context-free, that is, their 
productions will always have a single nonterminal on the left hand side. We will usually 
call these "grammars" even though they arc more properly called "context-free grammars" 
in the study of formal languages. It is often convenient to group several productions with 
a common left hand side using vertic ;il. bars to separate the production possibilities. So, 
for example, A -> B j C | D will denote three productions A -» D, A -* C, and A -+ D. 
The greek c is used as a symbol for the null string. 

■*fi 

■&aa*a^!i°Ja'Siäa 



INTUODUCTION 

Figure 1.1 The Encoding of Trees 

Grammar- are used primarily for description; they specify a set of acceptable strings, 
called a formal language. For example, if we are encoding trees by their walks, with / for 
lower, h for higher, and x for a tree node as shown in Figure 1.1, then the grammar 

T-+xF 

F -* IThF | e 
(1.1) 

specifies the language of valid trees. The first production means that every tree is a root 
node connected to a forest of offspring, while the second production defines a forest as a 
sequence of trees. Starting with the symbol T, the tree of Figure 1.1 is derived as follows: 

T 
xF 
xlThF 
xlxFhF 
xlxhF (1.2) 
xlxhlThF 
xlxhlxFhF 
xlxhlxhF 
xlxklxh. 

Considerable research has been devoted to the inversion of this process (parsing a string to 
obtain a derivation) and to the study of the descriptive power of formal languages. 

The focus of this dissertation is on another interesting property of formal languages. 
If the productions of a grammar arc treated as equations, with -» replaced by =, I by +, 
and i by 1, mid if the equations .^.re solved for the start symbol, the result is a generating 
function for the number of derivations of the grammar. 

Generating functions have become a central tool of combinatorial mathematics; they 
are used to study sequences of numbers {ff,}i>0. The g{ arc implanted as the Taylor 
coefficients of a function G of a dummy variable x: 

G(x) = Yd9i*i (1.3) 
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and thou the properties of the sequence are studied through the properties of G(x). Gen- 
crating functions have various flavors. We will be using ordinary generating functions like 
(1.3) in this chapter, and exponential generating functions in the following chapters. An 
exponential generating function has the form 

1 - IkT 

IhT2 = z (1.6) 

„     1 ± v^l - 4/hi T =  1 , 
2lh 

The extraneous root is discarded with the observation that the grammar cannot derive an 
empty tree, and so T(0) must be zero. The remaining root is expanded: 

„     1-y/T^lihx T —  1  
2lh 

= £(1f)(-ir,2J'-</'-1*-v (1.7) 

We obtain a rnultivariate generating function where the coefficient, of l"hhxe is the number 
of strings having a /'s, b /i's, and c x's. However, / and h are not particularly useful; there 
will always be one less of these walk control characters than there are tree nodes. Hereafter 
we shall drop such irrelevant characters by replacing them with 1 earlier in the analysis. We 
conclude that the number of trees with j nodes is equal to the Catalan number j (yl-/') • 

This close connection between formal languages and power series appeared in the early 
work of Schiitzenbergcr and Chomsky [Schützen 1001] [Chomskv 10G3]. They found that 
power series over noncommutativc variables could be very helpful in the classification of 
formal languages: regular expressions became rational equations, and context free languages 
became algebrai«- equations. Issues of ambiguity were now questions about the coefficients 
of power series. A full discussion of this line of research can be found in the recent work of 
Salomaa and Soittola [Salomaa 1078]. 

| 
1 

\ 

In our applications, the g, coefficients will count the number of derivations of a grammar. j 

Grammar (1.1) converts to two equations: 

r = lF (1-5) 
F = lThF + l. 

We solve for T by algebraically eliminating all other nonterminal characters and by treating 
terminal characters as dummy variables. 

1 
F = 
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4 INTIUMH'CTION 

Maurice dross was responsible for taking tliis line of research in Hie direction of enu- 
meration of combinatorial objects [Cross lOGGj. He realized that by commuting the variables 
of the power series, one could collect in the coefficients all words with the same composi- 
tion of terminal characters. (In the example above, we collected tog"ther all tiecs with the 
same number of nodes.) This meant that if a combinatorial object could be described with 
a string of characters, and if the valid strings could be described with a grammar, then 
it was easy to obtain a generating function for the family of combinatorial objects. The 
grammar had to be relatively simple (regular, or context free) and had to derive unambigu- 
ously the language of valid strings; nevertheless, this technique provided straightforward 
enumerations for several complex combinatorial families. 

The aim of this dissertation is to extend the applicability of forma) languages to a 
wide range of labelled combinatorial objects. This extension is developed in Chapter 2. 
Chapters 3 and 4 explore the advantages of the extension, using it to analyze algorithms 
and to generate combinatorial objects. But first of all. the remainder of this chapter is 
devoted to a survey of the enumerative uses of formal languages, in order to describe 
techniques that will be helpful in later chapters and to understand the limitations of formal 
languages. 

1.1 Variations of Trees. 

In a fundamental sense, every grammar describes a family of trees. (These are the 
derivation trees for the valid strings of the language.) So it is not surprising that context free 
languages prove useful in the enumeration of objects having an underlying tree structure, 
even though on the surface the problem may be unrelated to trees. Maurice Gross gives the 
following example: A ternary triangulation is formed by repeatedly dividing single triangles 
into three parts, where the division is accomplished by adding a new vertex in the interior 
of the triangle and connecting it to the three corners. A sample triangulation is shown in 
Figure 1.2. N 

U 

:i 

base 

I''*: 

Figure 1.2  A Ternary Triangulation 

Triangulations are encoded with parentheses: Each triangle is represented by a bal- 
anced pair of parentheses. ( ), and when a triangle is subdivided three new pairs arc 
introduced inside the original. (()()()), representing the new triangles in clockwise order, 
starting with the triangle on the base of the enclosing triangle.   The base edges of the 
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VARIATIONS OF TltEES. 

new triangles arc those edges in rotninon with the sides of the old triangle. Following this 
procedure, the triangulation pictured in Figure 1.2 is encoded as 

(()((()()())()())()) 

The grammar for this language guarantees that the interior of each pair of parentheses 
will be divided into three parts or none at all: 

S-(SSS)|(). (1.8) 

We would like to count triangulations according to the number of triangles, so "(" is mapped 
to i, and ")" is mapped to 1: 

S = xSs + z. (1.9) 

Rather than solve this cubic equation for S, there is an easier technique, due to Lagrange, 
that allows us to find the coefficients of S without knowing a closed form for S itself. In 
general, if we have a functional equation for 5, 

S = xf(S), (1.10) 

and if we let (xn)S denote the coefficient of xn in the Taylor series for 5, then Lagrange's 
inversion formula gives us: 

(xn)S = -(Sn-1)f(S)n. (1.11) 
n 

Further discussion of this formula can be found in Appendix A (which is oriented towards 
exponential generating functions as opposed to the ordinary generating functions of this 
chapter), and in the next example of this section. For the current example we obtain: 

(xn)S=-(Sn-l)(l + S*)n 

n 

10 otherwise. 

(1.12) 

For further enumeration problems with underlying tree structure see the works of 
Maurice Cross [Gross 1066], Jay Goldman [Goldman 1078 and 1070), W. Kuich [Kuich 
1070a and 1070b], and Vaughan Pratt [Knuth 1973; problem 2.2.1-11]. Several other prob- 
lems, although not analyzed originally with form.d languages, also exhibit tree structure: 
Schroder's second problem, Fibonacci sequences, and occupancy problems (with unlabellcd 
balls placed in an ordered collection of boxes) can all be encoded with context free lan- 
guages. 
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C INTRODUCTION 

The pervasive tree structure suggests that wo analyze the most general tree possible, 
cast in the form of functional composition [Goldman 1070]: 

T^F0\Fl\F3\ ... 

Fo -* /oi     /C2 /0<ro 

F, -/n(T) |/i2(T)|/13(T)| ... |/„,(!•) 

Fi-+ht{T,T)\f„(T,T)\... \/uAT,T) 

ft-/ji(T,r,r)|/S2(r,r,r)|... |/3«,(r,r,r) 

(1.13) 

A term, T, is cither a constant like JQX, or a function applied to several terms such as 
hi(T,T). The first index of an / symbol indicates the number of operands expected by 
the function. In order to count all possible compositions according to the number of terms 
present, we map the /'s onto x. This leaves an implicit equation 

T = xC{T) 

where C(T) has coefficients equal to the number of functions of each degree: 

C(T) = y£cjTi. 

Lagrange's inversion formula is well adapted to invert an equation like (1.14): 

(1.14) 

(1.15) 

(1.16) 

But here Itancy has develop«! the following, alternate, approach to the problem that 
gives an interesting constructive interpretation of Lagrange's formula [Ranoy 10G0]. First, 
notice that no information is lost by dropping the parentheses from a composition of func- 
tions, 

/lo(/2l(/oi,/o2)) 

/io hi /oi /OJ . 

because the functions appear in an unambiguous Polish, or prefix order. However, not 
every list of functions is a valid composition; we cannot always add parentheses and obtain 
a single term. 

When is a list of functions a valid composition? The answer uses the following scheme 
of Lukasiewicz: Functions requiring j operands are given a weight of j - 1, so the total 
weight of a complete term will always be -1. Continuing the example above, /10/21/01/02 
has weights of 0, 1, -1, and -1 for a total of -1, as expected. 

Suppose that the we jumble together a collection of /'s with a total weight of -1, is 
this necessarily a valid composition? Not always, but curiously one (and only one) of the 
cyclic permutations of our list will be a valid composition. The reason lies in an additional 

-''I 
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constraint on the weights. Not only must they sum to -1, but a cumulative, loft to right 
sum of the weights must remain greater than -1 until the last /. This avoids a premature 
completion of the term. 

If we graph the sum of the weights of the first j terms as a function of;', then a typical 
composition looks something like Figure 1.3 below. 

130   »20   110   WO   »00   K»   120   too   too 

3 

2 

1 

0   - 

-1 

Figure 1.3 The Cumulative Weights of a Functional Composition 

Notice that any cyclic permutation of these letters cannot be a valid composition since 
point A would have a y component less than or equal to -1, and would appear before the 
last position in the permutation. Conversely, if we take any collection of /'s summing to 
-1, find the point with smallest y component (breaking ties in favor of the leftmost point), 
and cyclically shift this point to the last position, then the new graph will remain positive 
until the end, indicating a valid composition. 

To derive Lagrange's inversion formula we simply interpret the last few paragraphs with 
generating functions. Starting with C(T), which has coefficients c, equal to the number 
of functions taking j operands, we can weight the functions according to Lukasiewicz by 
dividing by T: C{T)/T. 

Next we select JV functions with total weight -1, 

<r-> (£©)". (1.18) 

and we know that only one cyclic permutation will be correct, so there is a 1/iV* chance 
that we have a valid compositional pattern: 

<*",r=i(r-'>(^) 
N 

(1.19) 

This is Lagrange's formula for its inversion of T = xC(T). 

The functional composition problem explains why Lagrange's formula is so often seen 
in the solution of grammar related equations. By adjusting c,-, the number of functions with 
i operands, we are controlling the branching of a tree. Many problems arc special cases 
of the last analysis. For example the triangulation grammar appearing at the beginning 

\ . 
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8 INTRODUCTION 

of this section branches three ways (c3 - 1) and there is only one way to terminate the 
branching, (r0 = 1). The remaining roeflieients are zero. This means that our earlier 
application of Lagrange's inversion formula in equation (1.12) is equivalent to treating 
functional composition of a ternary function and a constant. 

The generality of the last result also points to a limitation in the use of grammars in 
enumeration. The problems may be complicated by several nonterminals (corresponding 
to constraints on the composition of functions) but it is hard to get beyond the basic tree- 
like nature of these grammars. Nevertheless, some extensions are possible. The next few 
sections are devoted to techniques that increase the versatility of context free languages. 

1.2 Indexing and the Q Operator 

Consider the following problem: 

Problem. Count the number of partitions of n into sequences of positive integers 
*i < «2 < «3 < • • ■ < »m such that t. + :2 + • • • + «m = n, and the parts of the partition 
arc bounded both in number (m < j) and in size (im < k). 

To solve this problem, partitions are encoded with blocks of r/'s separated by x's and f s. 
The g's encode the parts of the partition, the x's mark the end of each block, and the t's 
signal transitions in block size. Using this system, a partition of q into 1 + 1 + 3 + \ would 
appear as 

tqxqxttqqqxtqqqqx. (1.20) 

However, it is impossible to express a string like (1.20) with a finite grammar, since the 
grammar could not insure that block sizes increase. This difficulty is remedied with a 
countably infinite number of nonterminals. The grammar accounts for block size in the 
index of the nonterminals: 

Si-^qixSi\tSi+i\<L       t>0. (1.21) 

If we start with S0, the grammar has two quirks: it can generate an arbitrarily long string 
of x's before it produces any blocks of </'s; and it can append an arbitrarily long string of 
I'S to the end of a partition. Both of these quirks are helpful in solving the problem as 
originally posed. If we count all strings with j x's, then we will enumerate partitions with 
j or fewer parts. Likewise, if we examine strings with k fa then the maximum part size 
will be less than or equal to k. 

The remaining challenge is to solve an infinite set of equations for S0: 

Si=qixSi + tSn.i + l        j>0. (1.22) 

This is accomplished by applying the Q operator, Q/(x) = f(qx), to equation (1.22) and 
noticing that we obtain the equation for 5,+i: 

Qb\ = qi+lxQSi + tQSi+l + 1       ,• > 0. (1.23) 

So we expect that QS{ = Sin in which case the infinite set of equations collapses to a 
single equation for S0: 

S0 = xS0 + tQS0 + l. , (1.24) 
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INDEXING AND THE Q OPERATOR 0 

More formally, we have the following thcorc.j: 

Fixed Point Theorem. Let 5, be given by any system of equations of the form 

Si = qiOl(Si,Si+1) + 02(Si,Si + l)       t>0. (125) 

with operators Oi and Oi such that 

QOl(A,D) = qOl{QA,QD)       and       Q02(A,D) = 02(QA,QB). (1.26) 

Let S* be a solution of 

S' = Oi(S',QS') r03{S\QS'), (J.27) 

then Si = <?*'S* will satisfy the system (1.25). 

Proof. Apply Q{ to (1.27). 

The solution of (1.24) follows the pattern of binomial coefficier'3.   Wc know that, 
without the Q operator (i.e., when q = 1), 

S0 = xS0 + tS0 + 1 

1 
S0 = 

1-x-t (1.28) 

i.fc>o v   J   ' 

We claim that with the Q operator: 

S0 = xSo + tQS0 + l 

9 1 
5°-l-a:-tQ (1.29) 

y,*>o v   •*   '« 

where the following definitions make the analogy work: 

j!t = (l-«)(l-V)."{l-«i)/(l-«)' 

(j + k\ (l-q)(l-q,)...{l-q>+k) 

\   3   A      (l-«)...(l-ff»')(l-»)-(l-9*) (1.30) 

m>0 

Wc assume, in the last sum, that the Q operators are applied to all factors on their right. 
Further properties of the Q operator and q-noinial coefficients can be found in [Andrews 
1071). 
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Equations with the Q operator arc not always as clean as the above example. Our next 
example uses the chain rule to extract useful information from a more difficult situation. 
It is a technique that appeared originally in the solution of problem 2.3.4.5 5 in [Knuth 
1973], and will prove useful later in the analysis of algorithms. 

Problem.  What is the average internal path length of an imlahcUed tree? (Internal 
path length is the sum of the distances from each tree node to the root.) 

By modifying the grammar found at the beginning of this chapter we can preface each 
node of the tree with a block of q's. The length of the block of q's is equal to the depth of 
the node within the tree: 

i > 0 (1.31) 
Fi-*lTi+lhFi\e. 

An application of the Q operator reveals that QTX = Ti+1 so once again the infinite set of 
eqvations can be reduced to 

To = xF0 

F0 = (QTQ)FQ + 1. 

This time the solution is not closed: 

(1.32) 

T0 = 
l-QT0 

It can be expanded into a well known continued fraction of Ramanujan, 

1- 
qx 

1- 92* 

1- 
q5x 

1- 

(1.33) 

(1.34) 

but for our purposes we do not need a complete solution, only an average path length. This 
suggests differentiating equation (1.33) w.Hh respect to q and setting q equal to 1. Let 

U(x) = 
dT0 

dq 
«=i 

Wc have already computed 

(1.35) 

l 

.1 

V(x) = To|,.,, = 
1- y/T^li 

Rewriting equation (1.33) and then differentiating the equation gives 

To - T0QTo = x 

U-UV-V(V'x + U) = 0, 

(1.36) 

(1.37) 

brm'ttHril! 
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where the term in parentheses is the chain rule applied to QTo-  Algebraic manipulation 
yields: 

xVV 
V = 

1-2V 

x 1 - y/r^n 
2       1 - 4i (1.38) 

-sK-'-r;:,"))- 
For an average path length wc divide by the total number of trees: 

n2 Jn-3 

(5(;:/)) 
(1.39) 

1.3 Differencing 

The next example, taken from [Gross 19GC], illustrates another technique for dealing 
with languages that do not have grammars in the usual sense. The problem is to enumerate 
Tutte triangulations. 

Definition. A Tutte triangulation is a division of a polygon into triangles such that 
no internal edges have both their endpoints on the boundary of the polygon. One of 
the external edges is marked with an orientation, as shown in Figure 1.4 below. 

Figure 1.4 The Tutte Triangulation c[tfc[tftft/t]ft]. 

A triangulation is assembled from individual triangles that are denoted by Va in the for- 
mal language. Initially each triangle has a marked, counterclockwise oriented edge. The 
structure is aggregated by two operations. The fanning operation, /, joins two structures 
by abutting the edge following the marked edge of the first structure with the marked edge 
of the second structure. The expression t/t is shown in Figure 1.5 below. Notice that the 
marked edge of the first structure remains the marked edge of the whole structure. 

! 
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Figure 1.5 The Fanning Operation tiftj. 

The closing operation, c, creates a new marked edge that is connected to the tail of the old 
marked edge and the far end of the edge following the marked edge. The closure of Figure 
1.5, c[tft], is pictured in Figure 1.6. 

Figure 1.6 The Closing Operation c[fi/tj). 

The grammar for Tutte triangulations specifics that the outermost, or last operation 
must be a closure, to prevent internal edges from bisecting the triangulation: 

S 

R 

■c[R]\t 

SlRfS. 
(1.40) 

If we strip off the outermost closure, what remains is a triangulatiou that allows bisecting 
edges to touch the head of the marked edge. These arc represented by R in the above 
grammar; R can be decomposed by noting that R is either itself a Tutte triangulation, 
with no bisecting edges, or we can find the rightmost bisecting edge and split off a Tutte 
triangulation. 

However, there is a serious flaw in (1.40). It makes no sense to close a single triangle, 
and in general, if a structure has j external edges we may apply c only j - 3 times before 
an external triangle results. In order to avoid closing a triangle we would like to constrain 
the c's to be strictly less than the enclosed t's, yet this does not seem possible with a 
context-free grammar. 

The following differencing trick allows us to derive a correct equation from the grammar 
at (1.40). Let T be all strings representing Tutte triangulations where the exterior polygon 

jjgj0 
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is a triangle. Since 5 represents all Tutte triangulations, T is a subset of 5, containing 
strings wi'h one more t than c. If a string derived with (1.40) violates the constraint on c's 
and t's, then somewhere within the string a structure with triangular exterior is closed by 
a c operatiou. We prevent this from happening by subtracting the language c[T] from the 
first nonterminal: 

5-c[Ä]|«    -c[T) (l4l) 

R->s\RfS. 

Subtraction means that we eliminate a set of strings from the language derived from a 
nonterminal. If the strings eliminated are a pioper subset, as is the case here, we can 
proceed with a translation: 

S = cR + t - cT 
f (1.42) 

R = 
1-/5 

These equations combine to give: 

5 + cT = t + 
cS 

1-/5 
(1.43) 

The will always be one more t than /, so t can be replaced by 1. Now T{f,c) is simple 
the diagonal terms of S(f,c), and most features of interest are related to the occurrences 
of / and c, denoted respectively by 7 and C: 

Interior Triangles = 7 + C + 1 
Exterior Edges = 7 - C + 3 
Interior Edges      = 7 + 2C. 

(1.44) 

Using a sophisticated application of Lagrange's theorem to equation (1.43), Tutte was 
able to find an expansion for 5 [Tutte 1062; pages 26-31]. The number of triangulations 
according to 7 and C turns out to be 

2(4C + 1)! 
(3C + 2)! (C + 1)! 

(1.45) 

for 7 = C, and 

3(7"-C + 2)!(7- 
(37 + 3)! 

for 7>C 

C-l) 
mm(T-CC-l) 

E 
1=0 

(37 + C +1 - j)\(7- C + 2 + j){7- C -3j) 
i!(j + l)!(7-C-i)!(7-C + 2-i)!(C-l-i)! 

(1.46) 
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14 INTRODUCTION 

This completes our survey of the traditional uses of formal languages jn enumeration 
and some of the techniques used to extend them beyond their context-free limitations. 
Additional examples of non-standard use can be found in the works of Cori [Cori 1970, 
1972, and 1975], who uses them to study planar graphs, and in [Flajolet 1980], where they 
are used to count sequences of operations on data structures. 

In the remaining chapters we will extend the usefulness of formal languages from un'a- 
bclled to labelled combinatorial objects. This is accomplished by adding parti.il orders that 
govern the labelling of terminal symbols, and that preserve the straightforward translation 
(of grammars into equations) seen throughout this chapter. 

Chapter 2 introduces labelled formal languages, explains the relationship of grammars 
and partial orders, and demonstrates the wide range of classical generating functions that 
can be derived from this new framework. Chapters 3 and 4 explore some of the applications 
of labelled formal languages in diverse areas such as the analysis of algorithms and the 
counting and random generation of combinatorial objects. 

The grammatical extensions that follow are believed to be new, although they bear 
some relation to recent efforts to vest analytic operations with combinatorial meaning (see 
for example [Joyal 1981]). The "diminished search trees'5 of Chapter 3 do not appear to 
be either known or analyzed by earlier authors, however the differential equations used in 
Chapter 3 are also used to study the closely related "median of rf modification of quid *ort 
[Sedgewick 1975], [Knuth 1975]. Finally, the general purpose system described in Chapter 4 
and implemented in appendix C, seems to be unique in its ability to generate a vast variety 
of combinatorial objects from short grammatical descriptions. 

'"■•"irffinifirflt-^1^^^^ 
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CHAPTER 2 

LABELLED FORMAL LANGUAGES 

In the previous chapter we found that grammars could express a variety of interesting 
structures and were easily translated into generating functions. However, the class of 
combinatorial objects expressible in this way is limited. We could encode unlabelled trees 
with J's and h's for the lower and higher movements of a tree walk: 

xlxhlxh, 

but it was not possible to generate labelled trees, such as 

xilxihlx$h 

(2.1) 

(2.2) 

with ordinary grammars. 

The purpose of this chapter is to define an extended form of grammar that will generate 
the second, labelled, string given above while retaining the nice translation property of 
the preceding chapter; it will still be possible to convert a grammar systematically into 
an equation and obtain a generating function, although the equations will typically be 
differential and the generating functions will always be exponential. 

2.1 Smallest Label Control 

Throughout this section the labelled tree problem will serve as a good illustration: 

Problem.   How many rooted unordered labelled trees with n nodes are possible? 
(Cayley 1889] [Moon 1970] 

Unordered means that we do not care about the ordering of subtrees at each node. With or- 
dered subtrees the answer is just n! times the number of ordered unlabelled trees computed 
in Chapter 1, so it is the permuting of subtrees that makes this ail interesting problem. 

A labelled formal language has two new features. First, there is a special terminal 
character x. The occurrences of the special character receive distinct labels in the range 1 
to n, where n is the total number of special characters. Second, every derived string, partial 
derivation and production in the grammar has an associated partial order that specifies 
acceptable ways of labelling the special characters.  For example, suppose wc derive the 
string 

xjxbhlxch (2.3) 

SMaa&atfliaftafl 

fl 
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representing a small tree with two sons. Here a, 6, and c arc variables for the labels 1, 2, 
anl 3 that have yet to be assigned. Since we do not care about the ordering of subtrees 
the two labellings 

X2li\hlx^h       and        X2lx3hlxih (2.4) 

are redundant; only one should be produced by the grammar, so the partial order b < c is 
associated with the string: 

[b < c]xjxbhlxch. (2.5) 

This way all labellings of the string will be in a canonical order, with the label of the first 
subtree less than the label of the second subtree. 

We must now expect our grammar to produce both a string and a partial order. For 
this purpose variables are added to any nonterminal that can derive a string with I'S: 

T->[]xaFb 

F^{e<f\lTehFf\e. 
(2.6) 

We also associate a partial order with each production possibility. In the production T —» 
n^ai7),, the b subscript on the nonterminal F is a variable for one of the Labels 1 to n. 
However, since F can derive a string with many z's, the b stands for only the smallest label 
amongst the x's derived by F, if there is at least one x. Thus the production 

F-+[e < f\lTehFf (2.7) 

requires that the smallest label in the string derived from Tc be less than all the labels in 
the string derived from Fj. This constraint is precisely what we want for the tree problem, 
since this production is spinning off the descendants of a node in such a way that the 
smallest label will appear in the leftmost subtree, and of the remaining labels the smallest 
will appear in the second on the left, and so on. Notice that these smallest labnls can 
appear anywhere within their subtrees; we arc not ordering the roots of the subtrees as one 
might expect. Nevertheless, the final labelling, if it obeys the partial order fragments in 
each production, will be a canonical representation of a tree. 

A grammar of an ordinary formal language is a set of rewrite rules. Beginning with 
the "start" nonterminal and repeatedly replacing nonterminals by one of their production 
possibilities eventually results in a string of all terminals. A sin. ' process works for la- 
belled formal languages. In the tree example we modify the gran.TW slightly by expanding 
the first production, so that 

T->[)xaFb (2.8) 

is changed to 
T -> [a < b] xaFb \[c>d] xeFj. (2.9) 

This way each production possibility records the location of the smallest label. 

The string portion of a labelled formal language functions like a rewrite system, with 
renaming of the su'. „script variables a,b,c... if necessary to insure that all the subscripts 
In any partial derivation are distinct. 

The partial order is modified by substitution. Suppose we b?vc a partial derivation, 

\P]nSav, (2.10) 

üteafthiartaii 
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:;R 

'■j-'-rfss 
ISH0i 

and wo apply the production 
S-[filw, (2.11) 

whom u, v and w aro strings, ? is a partial ordor on tho subscripts of tiS„i>, and Q is a 
partial ordor o: tho subscripts of to. then S is rewritten to u», and a, in partial order P, is 
replaced by ihe smallest item of partial order Q. The r,v..nindor of Q is also added to P, 
but with no additional relationships between P and Q. sav- those implied by the addition 
of the smallest item of Q to P. In brief, the application of (2.11) to (2.10) yields: 

[P with Q substituted for a] uwv. (2.12) 

The substitution of partial orders is linked to the substitution of strings by the following 
requirement: if 5 is being rewriten to the empty string, then a must be maximal in P. Or, 
equivalently, whenever a nonterminal has a subscript that is not maximal it must generate 
at least one i. 

A labelled version of the small tree example sh ;uld clarify the substitution process. 

(2.13) 

T -* [a < b]xaFb (1) 
T -* [c> d] xcFd (2) 
F -» |e < /] lTthFf (3) 
F-c (4) 

The productions used are recorded on the right: 

[]r 

[c > d] xeFd 

[c> e < /] xJTehFf 

[c> a < /;a < b]xclxaFhhF{ 

[c>a< f]xclxahFf 

[c> a < g < t] xelxahlTghFi 

[c>a< j < i;j < k] xJxahlxjFkhFi 

[c> a < j < »'] xelxahlxjhFi 

[c> a < j]xelxahlxjh 

(2) 

(3) 

(1) 

(4) 

(3) 

(1) 

(4) 

(4) 

(2.14) 

Note that the partial order obtained by this process is stronger than necessary since 
we only care that, a < j (compare with equation (2.5)). The extra strength is due to the 
production chosen in the first step of the derivation; using T -* [a < b)xaFb would have 
derived another possibility, [c < a < j). This is ultimately a consequence of our splitting 
the first production, T -» []zo*6, into two cases a < b and b > a. However, this splitting 
process is necessary, for in order to substitute one partial order into another we must know 
the smallest item in the substituted order. 

The tree example illustrates another important constraint. At several points in the 
derivation the fourth production was applied and labels disappeared from the partial order. 
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At these points we rammt allow the label disappearing to he less than any other label. Thus 
the rewrite F -♦ < can he preceded hy T -* \a < b)xaFb, but not by T ~> [c > d\xeFd- 
This requirement eliminates unwanted ambiguity. 

In summary, an labelled formal language describes two intimately linked actions: a 
rewriting process for strings and a substitution process for partial orders. As the grammar 
rewrites a string it weaves together a partial order that specifics acceptable labelling» of 
the special characters. 

2.2 Translation to Generating Functions 

The simplest and perhaps most useful labelled formal languages have productions of 
the form 

R - \b < a;b < c;6 < d...] SaTbUcVd... . (2.15) 

where the partial order specifies one label, in this case 6, to be less than all the others. 
For the time being we will restrict our attention to these simple partial orders, and use 
the following shorthand notation: a box superscript marks the nonterminal or terminal 
receiving the smallest label, so the above production would be noted as: 

R->STaUV..., 

and the tree grammar of the preceding section would appear as: 

T-*xF 

F-+lTnhF\e. 

(2.16) 

(2.17) 

The absence of a box on the first tree production denotes the absence of constraints. We 
could also have written, 

T->xaF\xFa, (2.18) 

expanding the production as we did in the preceding section.   In later sections we will 
explore more complex partial orders. 

The translation of labelled formal languages to generating functions proceeds as follows: 
1) Convert the grammar to a set of equations by changing 

a) —► to = 
b) |  to + 
c) t to 1 
d) STnUV... to J(ST'UV...) 

2) Solve the differential equations for the start symbol and treat the result, as a nml- 
tivariate generating function that is exponential in the special character, and ordinary in 
the other terminal symbols. 

The tree grammar, for example, translates to 

T = xF 

F = J(irhF) + 1. 
(2.19) 

M 

$• 

1 

n 
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The J's and h's arc not particularly interesting to count, so / and h arc set to 1.   After 
differentiation the second equation becomes 

F' = T'F, (2.20) 

with solution F - eT, so we obtain the classic, implicit, generating function for labelled 
trees [Polya 1037]: 

T = xeT. (2.21) 

Notice that it doesn't matter which form of the first production we use for the translation. 
The first version T — xF, yields T = xF while the second version, T -* x°F \ xF°, yields 
T - J x'F + /if, but both are equivalent under integration by parts. Conibinatorially, 
the integration by parts rule simply states that the smallest label must appear in one of 
the two substructures on the right hand side. 

Why doe»- this translation work? The key step is l.d, where STnUV... is changed to 
J(ST'UV...). The other aspects of the translation are similar to the procedures used for 
ordinary formal languages. Step l.d, however, integrates the whole term, with the derivative 
placed on the boxed terminal or nonterminal within the term. Both the integration and 
the differentiation arc with respect to the special character, in this case x, which is now 
treated as a commutative variable. The constant of integration is always rcro, that is, 
/ f(x) means /„x f(y)dy. 

It is not hard to see why this works. Suppose we have a production R -* ST which 
translates to R = ST, and we have two exponential generating functions for S and T: 

»-E4 «>o 

i>o    J 

(2.22) 

Then the product is given by 

*-s(gGH*. (2.23) 

where the inner term, (*)3<ti_,-, builds a labelled derivation for R by taking any derivation 
a, for S, combined with any derivation i>_< for T, and relabelling so that the relative orders 
of the labels within 5 and T individually are maintained, but the two acts of labels arc 
intermingled in all possible ways, (J. 

Suppose now that we insist that the smallest label appear in the subtree derived 
from T by writing R -* STa. With exponential generating functions, the integration and 
differentiation in the translation of this production, R = f(ST'), act like shift operators: 

,>0 J 

(2.24) 

ft 
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Therefore the product, 

"£fe(VH£- (2.25) 

corresponds to shifting the smallest label of T away, intermingling the remaining labch, 
and then returning the smallest label. Wt obtain (*\l) rather than (*). 

2.3 Examples 

This section reviews a variety of classic enumeration problems in order to show the 
broad applicability of labelled formal languages. For each problem we will find an encoding, 
grammar, translation, and solution. Since some of the solutions will be given implicitly, by 
equations like T = xeT, a special appendix has been devoted to the techniques of Lagrange 
and Bell for recovering meaningful information from such equations. For each of the classic 
problems two references arc given, the first to the original source of the problem, and the 
second to a more accessible modern reference. 

2.3.1 Alternating Permutations 

Problem. Count the number of permutations oiOj ...an of 1,2,..., n that obey 
<T2,-i > OK < 02i:-n for all i. In these permutations the first entry is large and 
thereafter large and small strictly alternate. [Andre 1878] [Comtet 1074; p. 258] 

For the sake of clarity we restrict the problem to odd length permutations. The 
encoding of these permutations is simply a string of I'S, with the t'th x having label 0{. So 
for n = 3 there are two correctly alternating permutations, 12X1I3 and xjiiXj. 

The grammar for alternating permutations, 

Ax°A (2.26) 

is based on the observation that the smallest labelled x in the permutation splits the 
permutation into two correctly alternating pieces. The translation of the grammar, 

/ 
A* + z, 

reduces to a differential equation 

with solution A = tan x. 

A' = A2 + 1 

(2.27) 

(2.28) 

Tins example raises some interesting questions of ambiguity. In the preceding chapter a 
grammar had to be unambiguous to be useful for enumeration. The same holds for labelled 
formal languages, although in this case the underlying ordinary grammar A -* AxA I x is 
very ambiguous. It is the box operator, the augmentation to the grammar, that makes this 
an unambiguous grammar and allows us to obtain a useful generating function. 
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2.3.2 Stirling Numbers of the First Kind 

Problem. How many permutations ofn elements have exactly k cycles? 

This time permutations arc encoded by their cycle structure. For example, the permu- 
tation taking 1234 to 3241 has cycle structure (2)(3K), but since (2)(143) and (314)(2) also 
represent the same permutation we will disambiguate these possibilities by writing cyclca 
with their smallest element first, and arranging the cycles so that the rninimums increase 
from left to right, e.g., (143)(2). This is captured with the grammar 

P 

C 

R 

- C°bP I € 

->zDÄ 

-*xR \(. 

(2.29) 

The first production lays out the cycle structure, with b's separating the cycles. The box 
operator insures that the cycles will have successively larger minimum elements. The last 
two productions derive a cycle: C —» x°R makes the first item the smallest in the cycle 
and R —» xR I c finishes the cycle without constraint. 

The translation and solution of this grammar is straightforward, 

R = 
1-x 

p -_= f(C'bP) + 1 
(2.30) 

P' = C'bP 
p = c-Hn(l-«)i 

giving the familiar generating function for Stirling numbers of the first kind: 

e-*Mi-> = (!_*)-> = £ 
»j 

■ xn 

n! 
(231) 

Two modifications of the above grammar result in other well known generating func- 
tions. By insisting that no cycle contains a single clement, 

P -+ C°bP I c 

C - xaxR 

R -» xR I e, 

(2.32) 

we obtain derangements (permutations without fixed elements). This grammar converts to 
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By insisting tint each cycle contains no more than two elements, 

P -* C°bP | € 

C->xDz|x, 

we obtain involutions (permutations a such that a7(x) = x) with a generating function 

p = c-Mx+«V3). (235) 

2.3.3 Stirling Numbers of the Second Kind 

Problem. Count the number of partitions of 1 to n into j nonempty subsets. Tliis 
correspond* to placing n numbered balls into j indistinguishable boxes, disregarding 
the ordering of balls within boxes. 

The partition is encoded as a scries of labelled I'S, with p's marking the boundary 
between subsets. Within a subset, since the order doesn't matter, the i's are arranged in 
ascending order of their labels. Thus there are three partitions of n = 3 into j = 2 parts: 

Z1PZ2X3P 
ZlXjpijP 

Z1X3PX2P 
(2.36) 

An extra p appears at the right of each string so that there are as many p's as blocks in 
the partition. 

The grammar, 

F - BnpF I e 

B->x°R 

R-*x°R\c, 

(2.37) 

functions by first laying out the blocks of the partition arranged in increasing order of their 
smallest labels. Inside a block, the last two productions arrange the labels in ascending 
order, and insure that there is at least one x per block. 

Beginning with the last production we can transform and solve the grammar: 

R= f R ! + l 

R = e' 

fl = jR 
B = e'-1 

F = P[B'F + I 

F = eP(«"-i) 

(2.38) 

/ 

,7 

/ 
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Notice that when e1 is integrated to find B, we must subtract 1 to make the constant of 
integration zero. The solution gives a generating function for the Stirling numbers of the 
second kind, 

«*"-» = X; {?}•£. (2-39) 
»j 

Later on, we will find use for the associated Stirling numbers of the second kind, 
denoted by {"}   , and equal to the number of ways of partitioning n into j subsets with 

at least s items per subset. Rewriting the above grammar to force larger subsets, 

F -* B°pF | e 

Bi -* zD£,_i       1 < « < 3 

BQ^xDB0\e, 

(2.40) 

and translating this grammar, gives a generating function for associated Stirling numbers: 

F = e o<«<» (2.41) 

2.3.4 Mappings 

A mapping of the integers 1 to n into itself will consist of several disjoint components, 
each with a central cycle. Pictorially, a mapping looks something like this: 

u O" 
Figure 2.1 A Mapping of 1 to 11 into the Same Range 

Problem. How many mappings f : {1... n} -> {1... n) have exactly j components? 

If a mapping has only one loop and no other cycles then the mapping is a labelled tree. 
On the other hand, a surjection will consist entirely of cycles, with no tree-like structure. 
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The grammar for mappings combines these two extremes; it includes a both a tree generator 
and permutation generator: 

P - CabP | c 

TaR C 

R 

T 

F 

TR\e 

xF 

lTahF\e. 

(2.42) 

The first three productions have already appeared in Section 2.3.2 on permutations and 
Stirling numbers of the first kind, and the last two productions form a familiar tree genera- 
tor. Together these productions generate mappings, coded with 6's separating components 
of the mapping, and lists of trees within components ordered so that the tree roots form 
the cycles. The mapping pictured above would encode as: 

x^xijlxihlxihhxilxihx^bxzXnbxiQlx^hb. (2.43) 

Portions of the solution of this grammar are given implicitly, 

F = eT 

T = xeT 

C = -ln(l-r) 
p_c-*ln(l-T) 

(2.44) 

so wc don't have a closed form for P.   However, using the techniques of Appendix A, 
detailed information can be recovered from the generating function: 

=5(?»"11H (2.45) 

Metropolis and Ulam initiated the study of the number of components in a random 
mapping with some empirical results [Metropolis 1953]. Subsequent authors were able to 
compute the expected number of components and give complex formulas for the distribu- 
tion. The comparatively tight expression in (2.45) was discovered by Riordan [Riordan 
10G2]. Other questions about random mappings such as the number of recurrent elements 
(those involved in cycles) have been studied and arc also amenable to treatment with la- 
belled formal languages. 

7 
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2.3.5 Schroder's Third Problem 

Problem. A set of n Libelled dements is chained together in groups of size m as 
follows: we repeatedly collect m elements, delete them from the set and then add 
them back together as a single, new, grouped clement until only one clement remains 
in the set. This single clement is the. root of a labelled m-way branching tree. How 
many such trees or chainings arc there? [Schröder 1870] [Comtct 1974; p. 165] 

The problem is solved with a modified tree grammar, designed to force exactly m 
descendants at each node: 

T -> bSme | i 

Si -> TD5,-_i 

Si-+T. 

1 <i<m (2.46) 

A matched pair 6 (begin) and e (end) mark the left and right ends of chains.   So, for 
example, there are ten chains of n = 5 elements with grouping factor m = 3: 

66x1X2X36X4X50 

661112X4613X56 

66x1X2X56X3X46 

66x1X3X46X2X56 

66x1X3X56X2X40 

66x1X4X56X2X36 

6x16x2X3X46X56 

6x16x2X3X56X46 

6x16x2X4X56X36 

6x1X26x3x4X566 

(2.47) 

Notice that since the problem specifies no order among the m terms in a chain, the grammar 
uses a box operator to specify a canonical left to right, smallest to largest layout. 

Dropping 6 and c from the problem, the grammar translates to: 

T = Sm + x 

Si= fT'Si-i       Ki<m 

Si = T, 

from which we conclude that 

and rpm 
T=X+ —r. 

m! 

(2.48) 

(2.49) 

(2.50) 

Once again the generating function is given implicitly and the techniques of Appendix A 
are applicable: 

(S)'-<-'!'(<-U/Ö.-«) @) 
(n-l)/(m-l) 

(2.51) 

Ü 

% 

3 

when m - 1 divides n — 1. 

ii 
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2.3.6 Schroder's Fourth Problem and Series-Parallel Networks 

Problem. A Schroder system is a collection of subsets of the integers 1 to n that 
includes each singleton subset {«'}, fjjc whole set. {1,2,3,...}, and other subsets fhat 
are strictly hierarchical, that is, A C D, D C A, or A D D = 0. VVc wish to count the 
number of Schroder systems ofn elements. [Schroder 1S70] [Comtet 74; p. 224] 

Since they arc hierarchical, Schröder systems can be generated with labelled formal 
languages. The terminals b and e are used to bracket each subset: 

5 -> bxe I 65DA/e 

M-*SnQ 

Q-+S°Q If. 
(2.52) 

+ 1 

Notice that S -♦ bxc encloses every integer in its own subset. The combination of produc- 
tions S -* bS°Me and M —► S°Q eliminates redundant subsets like bbbxieee. 

Working backwards through the grammar, the productions convert to equations that 
arc readily solved: 

Q = js'Q 

Q = es 

M=fs'Q 

M = es - 1 

S = bex + be f S'M 

S = bex + be (es - S - l) . 

For counting purposes 6 and e are redundant—one of them can be dropped from the equa- 
tion. Applying Lagrangc inversion to 

(2.53) 

S = bx + b (es - S - 1) (2.54) 

gives an expansion in terms of the associated Stirling numbers of the second kind: 

S= >   <       '        >   6B+'^. (2.55) 

Networks of resistors motivate a problem that is closely related to Schröder systems. 
Every resistor has a different label, and the ordering within a scries or parallel group is 
irrelevant. So, for instance, there arc only eight significantly different networks of three 
labelled resistors: 
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1     2    3 

Figure 2.2 All Eight Networks of Three Resistors 

Problem. Count the number of distinct networks ofn resistors. 

A network is encoded by using p and q (backwards p) to bracket a set of circuits in 
parallel, and a and z to analogously bracket circuits in series. The string between a matched 
p and q can contain individual resistors, ij, or series circuits enclosed in s and z. So the 
above eight networks of three resistors would encode as: 

piii3i37 
spx\X%qx$z 
psxiXzZXzq 

3X1X3X32 

spxiX3gxj* 

psxix^zxiq 
sxipx^x^qz 
pxisxii^zq 

(2.56) 

Needless to say, there is a great deal of symmetry between scries and parallel. The three 
productions that generate a parallel circuit, 

(2.57) 

A - x I pEaB 

B-*E°C 

C-*EaC\q, 

are identical to the three productions for series circuits, 

E 

F 

G 

xIsA°F 
AaG 

AaG\z. 

(2.58) 

To this we might add an initial production, 

T-+A\E, (2.59) 

that allows the whole network to be series or parallel, but unfortunately this production 
generates two different single resistor networks; everything is fine, except for the case n = 1. 
To remedy this, wc advance the first production beyond A and E, 

T-x\pEaB\sAaF, (2.60) 

n 

;i 

i^ita^y», 
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and include only one copy of x. 

When translating this grammar, A can be expressed in terms of E, 

A = x+p(eE -E-l) , 

and likewise, E can be expressed in terms of A, 

E = x + 3(eA-A-l). 

(2.61) 

(2.62) 

Since we are seeking the total number of circuits of n resistors, independent of the number 
of internal series and parallel constructs, we need only invert E = x + eB - E - 1 to obtain 

-U.mjs- (2.63) 

Except for the case n = 1 the number of series- parallel networks is twice this coefficient, 

(2.64) 
Vo<y<n <■       3       > I*) 

The connection with Schröder systems should now be apparent. A Schröder system 
becomes a series-parallel network when it is "striped," by choosing a series or parallel nature 
for the largest set, and then alternating series and parallel down the chains of successively 
smaller subsets. 

The study of networks was begun by MacMahon [MacMahon 1892], who gave a for- 
mula for the unlabelled problem. Knödel found the implicit generating function for the 
labelled problem [Knödel 1951] and Carlitz and Itiordan noticed the correspondence with 
Schroder's problem [Carlitz 1959]. A good exposition, combining the labelled and unla- 
belled variations, can be found in [Itiordan 1978]. 

2.3.7 Eulerian Numbers 

Problem. A descent in a permutation is a p.iir of adjacent elements such that CT, > 
<r,+i. We wish to count the number of permutations with j descents. 

For this problem we encode the permutation directly in the labels of the z's. A g 
is inserted between every pair of z's with decreasing labels. For example, there arc four 
permutations of n = 3 elements with j = 1 descent: 

X\Xigx% 
X2X3gxi 

X29XiXs 
xzgxiXi (2.65) 

The grammar for this encoding relies on a simple fact: the smallest label will always 
cause a descent, unless it is at the left end of the permutation: 

E - Egx°E I xDE | Egxn \x. (2.66) 
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The differential equation derived from this grammar, 

E' = gE2 + E + gE + 1, (2.67) 

is complicated by the nonlinear function of E on the right side of the equation. Since this 
type of equation has appeared before (with alternating permutations, Subsection 2.3.1), we 
pause now to consider a solution strategy. 

If the right side of the equation has no constant term, 

then the transformation Y = 1/Z yields a first order linear differential equation, 

-Z' = kl + k2Z. 

When a constant term is present in the original problem, 

Y' = kiY2 + k3Y + k3 , 

then a constant c is also added to the transformation, 

(2.68) 

(2.69) 

(2.70) 

K = ± + e, (2.71) 

(2.72) 
giving an equation 

-Z' = Ml + cZ? + Ml + cZ)Z + *s£a • 

First fcic2 + fcjc + k3 = 0 is solved for c to eliminate the Z2 term from the right side of the 
equation, and to reduce the problem to a first order linear differential equation. 

Returning to the problem of descents, we find 

E=z+Ci 

gc\ + (</ + i)ci + 1 = 0 

ci = -1   or  
9 

(Curiously, the choice of root here does not matter, so ci = -1 is used.) 

-Z' = g-2gZ + {g + l)Z 

Z' = (g-l)Z-g 

Z=_^ + C2C*(»-i) 
g-l 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

Since the grammar does not generate an empty string, E(0) is zero, Z(0) is one and so 
c2 = -l/(ff - 1). Assembling the results, wc obtain the classic generating function for 
Eulerian numbers [Euler 1755; p. 487]: 

£ = g-ex{g-l) -.1. (2.77) 

I 

;i 

1 si 

1 

m 

Ä 

f\ 

^^^^^ 
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A recurring theme of the preceding examples is the idea of laying out ^ structure 
in canonical form. A group acts on some portion of the structure, and yet judicious use 
of the l)ox operator insures that only one representative from each equivalence class is 
generated by the grammar and counted by the generating function. So f'ir we've seen 
the symmetric group (acting on such things as the descendants of nodes in trees, and 
collections of indistinguishable subsets) and the cyclic group (acting on the cycles within 
permutations). To these two groups we can add two closely related groups, the alternating 
group and the dihedral group. The use of the box operator with these four well known 
groups is summarized below. The elements of the group are denoted by E'$ which can be 
cither single x's or nonterminals that derive structures containing I'S. 

1) The Symmetric Group, Sn: 

EaS (2.78) 

Here the elements of the group are arranged in sorted order, based on the smallest label 
within each element. 

2) The Alternating Group, Au.   The grammar must permit an additional degree of 
freedom in the last two elements: 

S - EaS \EE. (2.70) 

3) The Cyclic Group, Cn. A cycle is in canonical form when the smallest label is in 
the first element, 

S -* E°T 
l (2-80) 

4) The Dihedral Group,  Dn.   The dihedral group is laid out in the order depicted 
below: 

Figure 2.3  Layout for the Dihedral Group 

where the group is generated by a cyclic shift, (1357 ... C42). and a flip, (i)(23)(15)(67).... 
The grammar places the smallest label in the first element and insists that the second 
element contains a smaller label than the third: 

S -* EnTU 

T -+ EaE (2.81) 

U-*EV\t. 

Iu this way the four common groups can be encoded with labelled formal languages. 
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2.4 A Generalized Definition 

From a bottom-up perspective, the labelled production C -* AD constructs a string C 
by first constructing two labelled strings. A and D; then concatenating the strings; and then 
shuffling the labels together, in much the same way that two decks of cards are shuffled 
together. The presence of a box operator, C -* AnD constrains the shuffle so that the 
smallest label in A is also the smallest label in C; one card is flipped down from the A deck 
at the beginning of the shuffle. 

Pursuing the card analogy further, a "good" dealer can control more than just the first 
card on the bottom of the deck. The intermingling of the first few cards as well as the last 
few cards can be manipulated by the dealer as he shuffles. In the definitions that follow, 
two partial orders are intuduccd in the grammars. The partial order enclosed in brackets 
constrains the mingling of the smallest labels while the partial order in braces controls the 
largest labels. So, for instance, the production 

{«/} „{»> C-+{c>f>g}[b<c<a]A\'"Bl [a]      "(5c] (2.82) 

specifics that the two largest labels will appear in the string derived from A and the two 
smallest labels will be in ZTs derivation. 

Before we attack the general definition of labelled formal languages wc need some 
basic facts about partial orders. It is helpful to have a definition of partial orders that 
distinguishes between relations and sets: 

Definition. A posct is a set S together with a relation S such that: 

1) aSb => ->65a (antisymmetric) 

2) aSbf\bSc => aSc (transitive) 

S is usually described as a series of inequalities amongst the elements of «9, such as 
a < b, b < c. The transitive closure of these inequalities is 5 itself. 

Definition.   A linear embedding of a partial order is a mapping m of S into the 
integers such that aSb => m(a) < m(b). 

We need to carefully separate those labels that will be arranged according to a partial 
order and those labels that will be '•shuffled" in a less constrained way. For this purpose 
we introduce two new notions: active elements and boundary elements. Arrive elements 
will be counted with a partial order, while boundary elements will be "shuffled." They may 
appear in a partial order, but it is only to mark the edge of the active elements. For Mie 
smallest labels we have the following definition: 

Definition. An element, fl is a boundary clemei t if there are no elements a > ß. 

(In the definitions that follow, the reader can supply analogous definitions for the 
largest labels.) For a production like 

S — [6<c<a]AlalZ?M, (2.83) 

a is a boundary clement while 6 and c are not.   Since the subscripts on a nonterminal 
represent the smallest few labels wc could extend these subscripts through more elements. 

\ 
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In tH- last production wo could write B■tflt; with b < c < d. In tliis case d is also a boundary 
«■lenient, but to avoid adding d to the subscripts of D we will usually write something like 
equation (2.ST.) and say that B has an implicit boundary clement. 

Definition. An clement is active if it is less than every explicit or implicit boundary 
clement. 

Thus, in the example above, b and c are active elements. 

Definition. A partial order is well separated if all elements are either active or 
boundary. 

Again, our example above is well separated. Well separatencss is crucial to the trans- 
lation of grammars into integral equations. Wc will use differentiation and integration to 
remove active elements and count them according to partial orders. 

For purposes of derivation however, we need to be able to substitute partial orders. 
When a string contains a nonterminal like Z?^, and wc wish to rewrite the nonterminal, 
we must identify the two smallest elements in the derivation of B. This is possible if B has 
a production B -» [A]...  where A is 2-smallest determined: 

Definition. A k-smallest determined poset has k elements, 01,02,03,... ,Ojt such 
that Oi < <J2 < 03 ■ • • < Ofc and all other elements in S arc greater than a^. 

For purposes of the definition we include any implicit boundary points. This insures 
that al,a2 at will be less than all labels, even those not involved in the partial orders. 

Definition. (Substitution of Partial Orders) Let Q beak smalhst determined partial 
order ov r a scf Q with k smallest elements qi < q2 < 73 < ••• < qk. Let P be a 
partial order over P with k (not necessarily smallest) elements pi < p2 < p3 < • • • < 
Pk- Then the substitution of Q for pl,p2,p3,... ,pk in P is a partial order Z over 
[P ~ {PiiP2,--,Pk}) UQ consisting of P, Q, and some extra patching relations: 

l)pi<peP=>qi<p€R. 

2)pi>peP=>qi>peP, (qi acts like p{) 

3)p<PiG.PAqi<q€Q=>p<q€p, (transitive closure across the 
identißcation qi = Pi) 

i 

i 

( 

1 

Postponing for the moment the definition of label-controlled strings and derivation 
steps, we can define ... 

Definition. A labelled grammar is a ßve-tuple (T. 1, N, S, P) consisting of 

1) a terminal alphabet T, 

2) a special symbol x € T, 

3) a nonterminal alphabet N, 

4) a start symbol S 6 N, 

5) a set of productions P of the form 

■; 

w 
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C -» a Jabe]-c<   «itiJJcd string , (2.84) 

-'J 
4 

■ •'" a* 

m 

where C £ N. 

A label-controlled string D is derived by the grammar if it is possible to begin with S 
und obtain D after a finite number of derivation steps. 

Definition. A labcl-controlle<l string is a string over the same alphabet as the for- 
mal language (N, x, T) where each nonterminal has a (possibly empty) collection of 
superscripts and subscripts. The string is prefixed with two partial orders, one over 
the superscripts (enclosed in braces) and the other over the subscripts (enclosed in 
brackets). The occurrences of the special cliaracter x in the string have at most one 
superscript and one subscript. If two scripts are present, then one must be a boundary 
element. 

By insisting that at least one label of a doubly labelled x be boundary, the last definition 
prevents the two partial orders from interfering with one another. 

Definition. (Derivation Step.) The label-controlled string 

{P}[A\wF, {ptPt—Pi) v (2.85) 

derives in one step {£} [C] wGv if: 

1) There is a production F -* {Q} [8] G. where Q and ß are partial orders 
on the superscripts and subscripts ofG. 

2) Either 

a) G has no x's, j < I, k < 1, and plf ai are boundary elements of P 
and A. R is tiien the result of deleting pi from P, and C is the result of 
deleting oi from A. 

b) Q is j largest determined and R is the result of substituting fi for 
Pi.Pai- ••■>?] m P- 8 ,s * smallest dcterudnetl and C is the result of substi- 
tuting B for ai,<ij,...,a* in A. 

As the definition is writen, possibility 2.a is the only way that labels can disappear 
from partial orders. Tins is adequate for the definition, but we will sometimes find it 
convenient to have F derive a string of all terminals several of which are special characters. 
The essential point is that only boundary elements can disappear from partial orders. 

Definition. A mil derivation is a mapping of the labels of a label-controlled string 
(containing only terminal symbols) onto the integers 1 to n. The mapping must be a 
linear embedding of both of the partial orders associated with the string. 
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1 

m 

We turn now to thr transformation of labelled grammars into integral equations, for 
which wo will nerd to identify the active elements in the partial orders. 

Definition. The translation of a string, {P}\A]w, with well separated pascts P 
and A, is the product of 

1) The number of linear embedding* of the active elements of P. 

2) The number of linear embeddir.gs of the active elements of A. 

3) The integral repeated as many times as there are active elements in P 
and A, of the product of the symbols in w, each differentiated as many times as 
there are active elements in their subscripts and superscripts. 

Definition. The translation of a grammar is obtained by summing for every nonter- 
minal V G N the translation of each production possibility for V, and setting this sum 
equal to V. 

For example, the production 

with partial order 

A = 

[A] .<?[a4]X[(.]5[de), (2.86) 

(2.87) 

has two boundary elements, b and e, and three active elements, a, c, and d, so the production 
possibility is well separated. The translation is 

= GJIJ(S') (2.88) 

The above definitions make two, somewhat different, demands on the partial orders 
used in the grammars. A derivation step requires that the partial orders be Jfc-smallest 
or largest determined in order to make substitutions. On the other hand, the process of 
translation to integral equations requires that the partial orders be well separateil. In fact, 
the original grammar can bo presented in a way that moots neither of these requirements. 
If necessary, we can always express an aberrant partial order as the union of several valid 
partial orders, as we did with the tree example in equation (2.9). 

L. ..J 
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2.4.1 Left to Right Maxima and Minima 

Problem. How many permutations of 1 ton have j left to right maxima and k left 
to right minima? 

Permutations are encoded in the subscripts of the x's, with an / before each maximum 
and s before each minimum. For example, there arc six strings of length n = 3 with j = 2 
maxima and k — 2 minima, 

s/xssxiXj/x« 

3/13/1431113 

S/12/14I3SI1 
slxilX\SX\Xi 
3/X2AZ1IZ4Z3 

(2.89) 

The grammar, 

r-{e>/;e>ff}[6<o;6<C]r|y«f*"Äl«l 

(2.90) 

(a)  aI[6]   Ä|e] 

T - {/ > e; / > 9) [a < 6; a < c] T^tef^ /$> 

r -»six 

ä-»Xä|«, 

is probably clearer if we adopt the convention that ■ marks the location of the largest label: 

T -* Tmsx°R 

T - T°lxmR 

T-*slx 

R-+xR\e. 

(2.91) 

Permutations are decomposed based on the location of their smallest and largest elements. 
The first production for T covers situations where the smallest element is to the right of 
the largest clement; the smallest will be a minimum, so it is prefixed with an s. The second 
T production handles those cases where the largest is right of the smallest. R generates an 
arbitrary string of x's, for it is to the right of both the smallest and largest elements and 
so can have no further maxima or minima. 

The partial orders are well separated, so, using the translation defined above, we 
discover 

T = / / (T'aR) + / / (riR) + six 

R = xR + l 
1 

R = 
1-x 

«-(&)r 

)nr = -{s + l)ln{l-x) + cl 
7- = c2(l-x)(t+,). 

(2.92) 

ii 
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Wc conclude tli.it c2 = si since the only string with a single x has both a maximum and a 
minimum at that x. The grammar cannot derive an empty string, so there is no constant 
term in the final generating function: 

si 
s + l 

_((!_ ,)-.-!-« _!). (2.93) 

To derive strings representing permutations we need partial orders that are all 1- 
smallcst and 1-largcst determined. This is not true of the last production of (2.90), but the 
failure is easily remedied; we expand the production into several possibilities: 

R -> ,g> 
R->{k>j}{h<i}xl»Rtf 

R-.{j>k}li<h}xl»RM 

R-{k>j)li<h\,$Rf!;K 

(2.94) 

Now every production is 1-smallest and 1-largest determined. Wc can work a short example 
by starting with the first production of (2.90), 

{e > /; e > g} [b < a; 6 < c] T§ sx{»R$ , 

deriving a six from the T nonterminal, 

{e> /; e > g} [b < a; b < c] slx$«[«J$>, 

and then expanding R with the production R -+ xfc?: 

{e > /; e > g} [b < a; b < c] slx1^ax^x\* 

(2.95) 

(2.96) 

(2.97) 

There is only one way to label the remaining string that is consistent with both partial 
orders: 

slxssXiZi. (2.98) 

The fact that there seems to be one possibility, 

Ä-{i>fc}[fc<«i*K}Äj*), (2.09) 

missing from the productions for It is extremely illustrative. First, notice that this possi- 
bility is not a valid production. The special character x has two labels, neither of which are 
boundary elements of their respective partial orders. Second, notice that of all the possibil- 
ities for R at (2.94), only the invalid production given here at (2.99) can be followed by the 
replacement R -> c, since i and k are both boundary elements. In fact, if wc apply R -» e 

to (2.99) we obtain the correct production R -+ xffi found in (2.94). So the rewriting of 
R to meet the 1-dctenninedncss requirements is hardly very mysterious after all. 

P\'i 
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CHAPTER 3 

ANALYSIS OF ALGORITHMS 

In the past decade there has been rapid growth in a subspecialty of theoretical com- 
puter science called analysis of algorithms. Research has focused on the careful computation 
of average and worse case running times for algorithms. This is to be distinguished from 
mathematical theory of computation, which is more concerned with the logic and correct- 
ness of algorithms, and computational complexity, where the analysis is aimed at broader 
classifications like separating 0(n2) algorithms from O(nlnn). By contrast, analysis of 
algorithms endeavors to find exact or detailed asymptotic expansions for the performance 
of algorithms. On the theoretical side, this attention to detail leads to a great variety of 
interesting combinatorial mathematics, while on the practical side it can determine such 
questions as when an O(nlnn) algorithm surpasses an 0(n2) algorithm. In this way the 
analysis of algorithms spans both the theoretical and practical worlds of computer science. 

Figure 3.1 below is a rough diagram of the process of analyzing an algorithm. There 
are two paths. Across the bottom is what might be called the direct approach: within 
the algorithm a quantity of interest is identified, a recurrence relation is derived, and the 
recurrence is solved, using manipulations of discrete mathematics. The other, seemingly 
circuitous path through analytic equations and generating functions is often the easiest 
method of solution, because once recurrence relations are converted to functional equations 
the solution strategy is usually routine; we are solving quadratic or differential equations 
rather than manipulating sums of binomial coefficients, and so the techniques of real anal- 
ysis can be effectively applied to discrete problems. 

Labelled formal languages are useful for shifting from the discrete domain to the con- 
tinuous domain of real analysis. We have explored already in Chapter 2 the conversion of 
grammars to differential equations, this is the transition in the upper left hand corner of 
Figure 3.1 and undoubtedly the simplest step in the whole diagram. However, the analyst 
needs to express some quantity of interest in the algorithm using a formal language. This 
requires cleverness- it is not an automated step— but since the language of expression is 
based on formal languages it is a natural means of expression for computer scientists. 

> 

/. 
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Labelled 
Grammars 
 > 

Algorithm 

Analytic 
Equation 

Generating 
Function 

Recurrence 
Relation 

V 
->•   Solution 

Figure 3.1 A Simplified Picture of the Analysis of an Algorithm 

The purpose of this chapter is to demonstrate the usefulness of labelled formal lan- 
guages in the analysis of algorithms. To some extent this has been demonstrated already 
in Chapter 2, since variations of the classic generating functions appear frequently in the 
analysis of algorithms. To press the point further, the examples chosen for this chapter use 
labelled formal languages in a central point of their analysis, and use them in a way that is 
more complex than the examples of Chapter 2. We will study cache memories and search 
trees. 

3.1 The Degree of Associativity of a Hardwired Cache Memory 

Because a computer program is likely to make frequent reference to a small subset of 
its total address space, computer designers have discovered that substantial cost savings 
are possible with memory hierarchies. The idea is to put a frequently accessed subset of the 
address space into a small, fast, and expensive memory. Most memory references will reside 
in this cache memory, so the performance of the computer will be similar to a computer 
whose whole memory is built in this fast expensive manner, while the cost of the computer 
will in fact be based on a slower, cheaper main memory. 

Fitting the whole address space into a small cache is difficult: one approach is to use a 
fully associative cache that stores both the address and the content of each main memory 
entry residing in the cache. The cache is capable of simultaneously comparing a requested 
address with the addresses of each of the entries in the cache. If the requested address 
in present in the cache its contents are made available for processing, otherwise, a slower 
process fetches the entry from main memory. 

A second approach to caching saves most of the hardware necessary for parallel com- 
parisons. Part, of the memory address is used as an index into a table. Within a particular 
slot of this table several memory entries are stored along with the remainder of their mem- 
ory addresses. To search this table for a requested address we find the appropriate slot, 
read the entire slot into a special area and search the slot associatively for the desired entry. 
This is pictured in Figure 3.2. 

fa^-^ai 
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Address Contents 

Cache 

Address Contents Address Contents 

Comparison 
Hardware 

:i 

Figure 3.2 A Two Way Associative Cache Memory 

The number of entries in each slot of the cache is the degree of associativity. It 
is a design parameter affecting both the performance of the cache, that is, how close it 
comes to a perfectly associative scheme, and the cost of the cache since it determines the 
amount of comparison hardware needed. Empirical studies indicate that very little is gained 
by increasing the associativity beyond 2 or 4; however, we would like to understand the 
functional relationship between associativity and performance. To do this we will use the 
following simplified model. 

Assume that a load of size L is chosen at random from the total address space. We 
compute the performance of the load by inserting the load items into the cache. Some slots 
will overflow, in which case the extra entries remain in main memory. We assume that 
the program references the load items uniformly at random, so the performance depends 
on the amount of cache overflow. (This assumption makes the analysis independent of the 
replacement algorithm, since "uniformly at random" ignores the gain of moving entries into 
the cache after they are referenced. The locality of program reference is modelled instead 
by a choice of small L.) 

Under these assumptions we obtain an occupancy problem. If / is the index size and 
A the degree of associativity then the corresponding occupancy problem involves loading 

Jaa,u,:Mia 
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L numbered objects into / boxes, tagging each extra object after the /1th witli an overflow 
indicator. 

Here is a grammar describing this process for A = 2: 

S —* B2pS € 

B2 - x°Bx I £ 

Bt -* x°B0 | f 

B0 -+ox°BQ\i. 

(3.1) 

The p's separate boxes, the I'S are the objects, and a prefix o indicates that an object has 
overflowed. The grammar's equations can be solved: 

Ba 

Bt = 
e°*-l 

+ 1 

B2 = -T j+i + 1 
(3.2) 

S = 
1 

l-B2p 

From this construction it is clear how the associativity affects the generating function: 

1) One way. 

2) Two way. 

3) A way. 

eox      1 
Bl = f_ _ i + i 

o       o 

2?2 = —  r + X + 1 

BA = 
rA-l rA-2 

oA      o(A-l)\     o'2{A-2)\ 
1 x + 

A-\ -A-2 
+ 

oA     (A-l)\     (A-2)\ 

(3.3) 

(3.4) 

+ ••• + 1     (3.5) 

But it is not clear that we can obtain any meaningful information from these formulas. 
S is a multivariato function of p, o, and x. The coefficient of p1 ^ in 5 is a generating 
function in o representing the distribution of overflow for load L in I boxes. We can gain 
information about overflow by differentiating with respect to o first before wc extract the 
coefficient of p1 - 

L 

Average overflow = — (pl *L\ — S{p,x,o) 
o=l 

(3.6) 

VMmmAi ■■■ i 
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The equation is divided by all possible loadings of objects into boxes (I1) in order to obtain 
£. probability distribution. This is also accomplished with the substitution x *- y/I: 

0=1 

0=1 

0=1 

Average overflow = (pl -ry ) -~-S[pty/I,o) 

When o=l, the expression for DA(y/I,o) collapses nicely: 

The complexity lies in 

(3.7) 

(3.8) 

do 

Putting this together, 

o2(A-l)!       o3(yl-2)! ,A+l • 

(3.9) 

Average overflow = /^\ /*»<'-»>/'(e»/'J - Ae»" 

+ l^i)r+2(A-2)! + 

thus for A = 2 we expect the overflow to be 

L - 11 + L(l - 1//)L_1 + 2/(1 - l//)1,. 

• + AV 

(3.10) 

(3.11) 

A similar calculation, using the second derivative with respect to o, yields the variance. 

For comparison of different A a realistic standard is the total volume V = AI. We 
assume that the load is some proportion of this volume L = aV. As a -* 00, L- V overflow 
is expected, regardless of the associativity. For smaller a the associativity plays a more 
important role. To examine this region we let V -» 00 and approximate (1 - l/I)L with 

-aA. 

A-2 

Average overflow = L-V + Ie~** (^JJ (y)       + (X^2)T (?)       + '' * 

♦^(f)"M*) 
(3.12) 

= L-V + . 

ft 

m 
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Two cases arc of interest, 
associativity: 

When Q  —♦ 0, the overflow is exponentially related to the 

Average overflow V (a 
-aA 

1 + (AcaA - 

A[A+l)\    )E^> 

A 

-aA{aA)A+1 

aAeaA + 
(aA)A + l      2(aA)A+i 

(A+l)\       (A + 2)! ■)) 

where the error is constrained by 

1 < E(a) < 
(i-ay 

(3.13) 

(3.14) 

For small Q the most sensitive term in equation (3.13) is a-4 M; so the percentage overflow 
falls off dramatically with the associativity. 

A second case of interest is when a = 1, corresponding to a cache pressed nearly to its 
limit: 

Average overflow 
= *(•—-*(« 

+ [aA)A^ 
(A-2)\ ♦0 

aA 

(* 

- l)[aA)A-1      (A 2){aA) A-2 

(A - 1)! {A - 2)! 

A)A~> 
•)) 

7(a-1 + (1-Q)e        (lÄ32)T + h-3)! 

(A-iy.) 

+ ■ + 1 

Ye 
AA-l 

(A-l)! 

(3.15) 
Here the percentage overflow falls off inversely with the square root of the associativity. 

Depending on one's temperament, there are two ways of looking at this last result. 
Remember that the case Q = 1 causes a fully associative cache to work beautifully, with 
no overflow and full memory usage. The above result gives encouraging news: a cheaper, 
four way associative cache is worse by only 20X overflow. However, the result also gives 
discouraging news: when the load factor ft nears 1 increasing the degree of associativity is 
not particularly helpful. It is only when a is small and performance good anyway that the 
degree of associativity has an impressive effect on the amount of overflow. 

Let us pause for a moment to compare the augmented grammar approach with the 
traditional analysis of this problem. Normally we would assume that the number of boxes 
is large so that we could approximate the behavior of an indiudual box with the Poisson 
distribution. (In fact, fragments of the Poisson distribution aj.pear in the above formulas.) 
Then we would sum the expected overflow from each box to obtain an average overflow 
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(a technique that wouldn't work for the variance). The chief advantage of the augmented 
grammar approach is that it leads gracefully to a multivariate generating function that 
contains all the important information, without approximations. Approximations can come 
later in the process of understanding the asymptotic features of the distribution. 

3.2 Binary Tree Search 

A binary tree is a data structure used for the storage and retrieval of information based 
on keys associated with entries in the tree. The data structure is well suited for applications 
where: 

1) There are roughly the same number of insertions as retrievals. 

2) It is difficult to predict how large the data structure will grow. 

3) Average performance is more important than worse case behavior. 

4) The data structure resides in main memory. 

5) It is helpful to know the order of keys. 

If any of these criteria are not met then there arc better options: when retrievals greatly 
exceed insertions then a balanced tree scheme is preferable. Hashing is used in cases where 
the table size is fixed in advance, and the order of keys is irrelevant. When the data size 
exceeds main memory it is often bcUer to use a structure adapted to the computer's page 
size, such as B-trees. Nevertheless there is a distinct domain where binary trees are the 
best known method of storage. 

This section proposes a modification that is intermediate between balanced and un- 
balanced tree searching. Rather than completely balancing the tree, it only improves the 
balance of the data structure; we will call it diminished tree searching. The domain of use- 
fulness for diminished tree search overlaps primarily with the ordinary tree search domain 
described above; and, as we will sec shortly in the analysis, it outperforms ordinary tree 
search on the larger problems. 

3.2.1 Diminished Trees 

In ordinary binary tree search the tree nodes contain a left link, a right link and a key; 
and the central loop of the search routine looks something like this: 

while true do 
if tf.key > sought then 

if tf.lcft ^ nil then t «- tj.left else goto missing 

else if t\.key < sought then 
if f\.right ^ nil then t«- tf.right else goto missing 

else goto found 

missing: ... 

found: ... 

SI 
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Notice that there arc two exits from the loop, one for a successful search, and one for the 
unsuccessful possibility that the search encounters a nil pointer. Since the loop will usually 
be exevured a logarithmic number of times it represents the largest asymptotic contribution 
to the running tinu of the algorithm. The exits require only a constant amount of additional 
computation and are therefore less important to the overall performance of the algorithm. 

Recognizing this difference in cost, the modifications necessary for diminishing the 
search path are made entirely within the exit code, leaving the inner loop of the search in 
its swift untouched form. To do this we introduce dummy nodes at the leaves of the tree: 

Tree Node 
left key right 

NIL 00 
Accumulator 

List 

Figure 3.3  A Dummy Node and an Accumulator 

Due to the infinitely large key at a dummy node, the search loop will always turn left, 
encounter a nil pointer, and take the "unsuccessful" loop exit, at which point new code 
will pick up the right pointer and search the accumulator list for the desired key. The 
accumulator is maintained as an ordered list, so if the sought key is missing and must be 
inserted then shifting may be necessary to keep the keys ordered. The accumulator also 
has a fixed odd size. 2t+ 1. If the arriving key fills the accumulator then the list is split, the 
median key is placed in a new tree node, and two accumulators are created with t elements 
each. This is depicted in Figure 3.4. The algorithmic details can be found in Appendix B. 

It 
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I   /     I    M    I     V   1 

NIL I   «>  I      x   I 

i 
Figure 3.4 An Accumulator Splits 

The accumulators allow the tree to grow in a delayed fashion. Those keys appearing 
in tree nodes are chosen after 2t + 1 keys are examined. This extra enlightenment means 
that tree nodes will more evenly split future insertions into their stibtrees and so diminish 
the path length of the whole tree. However, we need to study this change carefully to 
understand when path length improvements exceed additional accumulator costs and to 
pick the best value of the parameter t. 

-r: 
•-A 

3.2.2 Analysis of Diminished Tree Searching 

For the analysis it is convenient to introduce the notion of an ordered heap, an object 
that several authors have found useful in studying binary trees [Bürge 1072] [Franqon 1076] 
[Viennot 1976]. A heap is a binary tree with the labels 1 to n assigned to the nodes in 
such a way that each node has a smaller label than all of its descendents. An example is 
pictured in Figure 3.5. 

M 
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Figure 3.5 A Heap 

Search trees and heaps arc related as follows. We take a permutation of 1 to n and 
insert it into an ordinary binary search tree. At the same time we create a heap with an 
identical shape as the search tree, but we use the order of filling the search tree to label 
the nodes of the heap. Figure 3.G shows the permutation and search tree corresponding to 
the heap in Figure 3.5. 

2413 

'■\i 

Figure 3.6 The Companion Search Tree and Permutation for Figure 3.5 

Given a heap we can recover the associated permutation by walking the heap in infix 
order. If the tth node in infix order has label j then t is inserted into position j of the 
permutation. There is thus a one to one correspondence between heaps and permutations 
that will make heaps especially useful in analysis. 

Let us begin our analysis by using heaps to study ordinary binary trees. The grammar 
for a heap uses the box operator to insure that every node's label is smaller than those of 
its descendants: 

S-+x°lShlSh |f. (3.16) 
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And, not surprisingly, the solution of this grammar indicates that there are n! heaps of 
sire n: 

■/■ 
S = I S2 + 1 

(3.17) 

1-x 

Of greater interest is the path length of a heap. For any rooted tree the (intern.-1.) path 
length is defined to be the sum of the distances from each node to the root. In the case of 
heaps the path length is the total number of comparisons used to build the corresponding 
search tree. Dividing by n, the size of the tree, and adding one for the last comparison, 
gives the average number of comparisons for a successful search. 

To analyze path length we add an index t for depth: 

Si-*qixatSi+lhlSi+lh\c. (3.18) 

Each node i has been prefaced by a string of g's recording its depth in the tree. 

Converting this to an integral equation, 

Si = qifsll + 1, (3.19) 

and applying the Q operator {Qf(x) = f(qx)) yields the the same equation as for Si+i'. 

J (3.20) 

= «*+1ywsi+1)» + i. 

This suggests the conjecture QSi = Si n, which agrees with our intuition: any subtree with 
root at depth i can be moved to depth t + 1 by prefacing each node x with an extra q. 

For the whole tree we obtain the equation 

Si = (QSo? (3.21) 

which does not seem to have a simple solution. With the chain rule of differentiation, 
however, we can extract useful information from the equation. To obtain the mean path 
length, we differentiate with respect to q, seeking a generating function in x alone: 

T(x)= §-SQ(x,q) 
dq 

(3.22) § 

The coefficient of x* in T[x). treated as an ordinary generating function in x, will be the 
average path length of heaps of size t. (Ordinarily all generating functions in the labelled 
terminal x are treated as exponential. In this situation the t! is the normalizing factor for 
the probability distribution in path length.) 

I 

I 
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Differentiating botli sides of (3.21) with respect to q and using the chain rule reveals 
an ordinary differential equation for T, 

d_ d_ 
dq Ox 

So(x,q) 2S0(qj-,q) 
,=i 

1 1 

«=» 

r = i 
l-i 

(1 - x)T' - 2T(x) 

With integrating factor (1 - x)~2, 

(TT^ + r(l) 

2x 

(l-x)a- 

(3.23) 

(3.24) 

(3.25) 

T(x) = (l-x)-*G(x) 

G(x) = -21n(l-z)-2x 

r(-r\ -    ■>(*-*) + * 

(3.26) 

and we can recover the coefficient of x' using a family of identities, due to Zave [Zave 1976], 
for powers of ln(l - x) over powers of (1 — x). In this case, 

-^il = j;(ff-;i-i)(» + i)*n, (l-x) 
n>0 

so the expected path length is 

2(/rn+1-l)(n-l)-2n, 

and the average successful search will require 

2ffn-3 + 2- 
n 

(3.27) 

(3.28) 

(3.29) 

comparisons. 

The intent of this section was to study diminished searching and yet so far we have 
only managed to compute the comparisons for ordinary tree search. However, the steps of 
the above analysis will provide a model for our analysis of diminished searching. Recall 
that wc: 

1) Established a correspondence between» the data structure of interest (search trees) 
and another structure (heaps) that logged the arrival of elements of the first structure. 

2) Developed a labelled grammar and converted it to a differential equation in two 
variables. 

i:m 
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3) Removed one variable (using the Q operator, and the chain rule), and solved the 
remaining dilFereuti.il equation for a generating function. 

4) Recovered the coefficients of the generating function. 

These stops will be repeated in the analysis of Diminished Tree Search, but first let us 
review some mathematics that will prove useml in the analysis that follows. 

In the fourth step we made use of an identity of Zave. Here is the most general form 
of the identity: 

(-ln(l-g))" _Y-PIH  ,._// H{n)   -HM)(m + i)zk, 

where the angle bracketed superscripts indicate a truncated Riomann sums, 

and the polynomials Pn arc related to the Bell polynomials YH: 

rn{s1,...,sn) = (-l)nYn(-sl,-s2,-2s3,...,-{n-iy.8n). 

We will make heavy use of two subcases: 

-ln(l-z) _y^ )(m+j)zi 

(3.30) 

(1 ;>o 

M_^ = g«*.+, - Hm)> - </#, - //-)) ("-') o. 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

in order to recover the coefficients of generating functions. 

In the third step we solved a differential equation, 

(1 - x)T' - 2T = 
2i 
-^2 ' (1-x) 

(3.35) 

by using the integrating factor (1 - a;)"'. Such a clean integrating factor was possible 
because of the (1 - x) factor prefixing T". In general, wc can solve higher order equations 
like 

a(l - x)3T'" + 6(1 - x)2T" + c(l - x)T' + dT = 0 (3.30) 

as long as the power of the prefixing factor matches the differentiation of T. First wc use 
the change of variables v = 1 - x, and then we replace differentiation with the operator 
i? - v^j, so a term like vnr^n) can be expressed with a failing factorial of the operator: 
tf2T("). Equation (3.36) above becomes 

(-0 0* +60*- cd + d)T = 0. (3.37) 

: 

■;--- 
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In general wo will have a polynomial of the operator applied to T: 

P(t>)T = 0. (3.38) 

= 0 
(3.30) 

Suppose we have a factorization of this polynomial and r is one of roots. The contribution 
of a single root ran be found using vr for an integrating factor: 

(tf - r)G = 0 

G = vrH 

v'VH = 0 

dv 
H = k 

G = kvr, 

where k is a constant determined from initial conditions. Tf the equation is inhomogencous, 
with a right hand side of v", s / r, then the solution is still straightforward: 

(tf - r)G = v3 

G = vTH 

t/tftf = v' 

dH 
dv 

= v »r- 1 
(3.40) 

H = k + 

G = kvT + 

(*-r) 
v' 

(s-r)- 

By combining these two solutions, we can see the effect of a simple root in a higher degree 
polynomial. Let the polynomial have distinct roots: 

PW = (d-ri)(d-n)...{0-rn) (3.41) 

Then P(tf)T = 0 can be solved by setting G = (tf - r2)(tf - r3)... (tf - rn)T. The equation 
becomes 

(tf - n)G = 0 (3.42) 

with solution G = kvT%. Now the remainder of the equation is inhomogencous, 

(tf - r2)(tf - r3)... (tf - rn)T = few" , (3.43) 

but we can continue to strip factors from the beginning of the equation until we eventually 
obtain 

where 7?(tf) = P(tf)/(tf - n), and the other roots contribute terms that arc not shown in 
equation (3.44). 
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The solution of an inhomogcncous equation with a right hand side of vr is slightly 
more complicated: 

(«? - r)G = vr 

G = vrH 

vr0H = vr 

H = lnv + k 

G = vThiv + kvr. 

So we will also need to be able to deal with logarithms on the right hand side: 

(ti-r)G = v']nv 

G = vrH 

vT0H = v*\nv 

^=V bw (3.46) 

v—\nv       v'-' 
H-ir=^     (s-r)>+k 

G = -. r - 7 rr + kvr . 
(s - r)     (a - r)3 

Once again we can combine these two solutions to see the effect of a single root that is 
equal to the power of the inhomogeneous right hand side. We assume that the other roots 
arc distinct: 

J»(*) = (*-r1)(tf-ra)...(*-r„) 

P(t?)r = t>rt 

G = (*-ra)(i>-ra)...(*-rn)T (3.47) 

(t?-ri)G = wri 

G = vrilnv + kvrt. 

Repeating this technique for the other roots modifies the constants on the contribution of 
the first root until finally, 

_     vr'lnw       Ä'(ri) k ..... 

where again, R{d) - P(tf)/(tf - ri) and k is a constant determined by initial conditions. 

i'i 
lt—'--,J 
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With the mathematical preliminaries completed we can begin the analysis of Dimin- 
ished Tree Search. The data structure is encoded with the usual / and h charactcis for the 
tree portion of the structure. The x characters «ire used for valid keys present in the internal 
tree nodes, and y's arc used for the dummy +00 keys in the leaves. The accumulator lists 
appear as contiguous blocks of x's, enclosed with 6's and e's. Ignoring the labelling of the 
x's for the moment, the following grammar encodes the shape of a diminished tree: 

S - xlShlSh I ylhlAh 

A —* bxxe Ibxxxe |bxxxxe. 
(3.40) 

In this case the accumulator parameter is t = 2, so the accumulator lists will range in size 
from 2 to 4. We assume that the tree always has at least t keys. 

Following the analysis completed already for ordinary tree search, the z's are Labelled 
with the order they were first inserted, rather than using the actual keys. The labels are 
constrained by the construction process for the tree. Since a tree node results from the 
splitting of an accumulator list of size 2t + 1, we expect that the smallest 2t + 1 labels of 
the subtree (representing the first keys inserted) will be divided evenly: t will appear in 
the right subtree, t will appear in the left subtree, and one will appear as the key of the 
tree node. The following partial order expresses the constraint on labels of a subtree: 

/ a \ 

Figure 3.7 The Distribution of Labels in Subtrees 

Denoting the partial order by 8 we can augment the grammar so that it specifies a labelled 
formal language: 

S - [8}x[allSlfgh]hlSlmno]h I ylhlAh 
II (3-50) 

A —* bxxe   bxxxe   bxxxxe. 

The partial order 8 is well separated: in Figure 3.7 g, f, a, m, and n are active, while 
h and o are boundary elements. To convert, the grammar to an equation we multiply the 
number of linear embeddings of 8, (2f

t* *)(i + 1), by a repeated integral: 

(2<+1\ r(a«-H) 
^  ](* + !)/ (S(t))2 + zt + z'+1 + ••• + x2^ (3.51) 
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For the moment wc have dropped all of the terminal characters from this equation. A 
superscript in parentheses indicates repeated differentiation unless it appears on an integral 
sign, in which case it signifies repeated integration. Diifcr'-ntiating both sides of equation 
(3.51) yields: 

SV"i)=(2t + 1\(t + l)(SM)\ (3.52) 

with solution 5 = 1/(1 - x), indicating, as wc would expect, that there are n! trees with n 
keys, one for each permutation. The initial conditions that were present in equation (3.51) 
but disappeared with the differentiation force us to modify the solution: 

5 = 
l-i 

(3.53) 

The first t - 1 terms of the scries are now absent due to the fact that the grammar cannot 
derive a diminished tree with less than t keys. In practice, of course, the algorithm starts 
with an empty tree with one accumulator list that absorbs the first few keys. Once this 
list contains t or more keys, we can claim that all accumulator lists in the tree contain 
between t and It keys, so that the above grammar is valid. We could modify the grammar 
to account for the initial anomaly, but it is easier to use the unmodified equation with the 
qualification that n > t. For n<2t the algorithm behaves like an ordinary insertion sort. 

Most quantities of interest in the analysis of diminished tree search are obtained from 
suitable variations of the grammar proposed above. Suppose, for example, we are interested 
in the number of nodes in a data structure. Ordinary trees contain one node for each key, 
but diminished trees have dummy nodes with no key at all, and accumulator lists with 
several keys. The number of nodes corresponds to the number of allocations during the 
running of the algorithm— an operation that is often expensive in liigh level programming 
languages. 

To study the number of allocations an c is added to the grammar at each point that 
a new node is used: 

5 - [B]cx{a]lSlfgh]hlSlmno]h I cylhlcAh 

A —*bxxe   bxxxe   bxxxxe. 
(3.54) 

This converts to the equation 

5(a«^) = (2l
t

+1)(« + l)c(5W)8 

with initial values 

5 = cV + cV+I+c-,i' ,2„t+l   ■  -2_«+2 ■ + cV« + 

(3.55) 

(3.56) 

which does not appear to have a nice, closed-form solution. Nevertheless, wc can simplify 
the problem by letting 

T(x)=-_^=i. (3.57) 

-ti 

'A 

■:'■% 

% 

», 
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The coefficient of x% in T(x) is the average number of nodes in a tree containing i keys. 
Differentiating equation (3.55) with respect to c gives an equation for T: 

T(J«+i) = ^ + l\(t + i)((5««)|e=1)3 + 2Sl%-_i T<«>) 

(1-z) 

(i -i)2t^r<2,+1> - 2(2f + 1)!(i -i)'Ti') = (2f + 1)!. 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

Here S'^|c=i is obtained by differentiating the solution 5 = 1/(1 - i) of equation (3.52) 
above. 

The substitutions v = I — x, 0 = v-^ transform the last equation to a form we've 
explored already, 

The polynomial of the operator t? depends on the parameter t: 

pt[#) = 0*±! + (_i)« 2(2« + l)S±itf*. 

(3.62) 

(3.63) 

This polynomial appears in the analysis of median of n quicksort (sec [Sedgewick 1975]), 
and will appear again in the study of other aspects of diminished searching. It is worth 
diverting now to study the properties of P«(t?). 

Since tJ- can be factored from equation (3.63) we know that t? = 0,1,2,... ,t - 1 are 
all roots of Pt[d), leaving 

Pt(#) = tf« ((# _ t)i±i + (-l)«2(2t + l)*±i) . 

There arc other integer roots. Whenever t is odd t? = 3« + 2 is a root: 

(d - *)*H = (2« + 2)i±i 

= 2(2« + l)*±i, 

and t? = —2 is also a root, following the observation: 

(,?-i)«±i=(-2-«)!±i 

= (-l)i±i(2* + 2)i±i 

= (-l)LLL2(2t + l)i±i. 

(3.64) 

(3.65) 

(3.66) 
r 
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As t grows large, we can express the falling factorials of equation (3.G6) with gamma 
functions and use Stirling's approximation: 

!•(-* +tf + 1) =  T(-t-l) 
r(-2« + t?)        T(-2t-2) 

et-*-i{-t + if+l)-t+*+i-W        e«+iH-!)-«-»-!/» 

*+/) = «—'H-l)t+12*+J+1'2(1 + o(r>)) 

2-,,-a = i + o(r1) 

So the other roots converge towards the points -2 ± kfä% as shown in Figure 3.8, where 
the smooth curves sketch the discrete trajectories of the roots as they were located with 
MACPYMA's root finding algorithm. 

The root with the smallest real comr -^-nt makes the largest contribution to the asymp- 
totic growth of the coefficients of the solution. In the case of Pt(d), t? = —2 is the dominant 
root, so it will prove useful later to factor t? + 2 from the polynomial: 

(tf - t)i±l t(tf-2<) 
tf+2 {        '    tf+2 

= (d-t¥--(2t + 2){d-t) t
-i(tf-2«-l) 

d + 2 
(3.68) 

= £(-l)'(2t + 2)i[d - t)*=L+ (-l)«+»i^l      . 

This means that 

Pt(*) = (* + 2) «?M £(-i)'(2t + 2)i(t? - j)i=ij (3.69) 

fc 

'.■{', 

t> 

: 

^ 

. 

■M 
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15 20 25 30 

Figure 3.8  The Roots of P0(t?) 

Several constants related to the Pt(d) polynomials will also prove useful. Let 

KW t? + 2 
(3.70) 

We wish to compute Rt{-2) and R't(-2) in order to apply equation (3.48). Using L'llopital's 
rule these quantities can be expressed in terms oi" Pt(i?): 

Rti-2) = P/(--2) 

R'f-2) - V + WW-PtW 
0=-2 

_ Q? + 2)Pt"(i?) + Pt'(fl) - P't{ß) 

2(t? + 2) 4=-% 

^ P"(-2) 
2 

(3.71) 
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Since Pt{d) is the difference of two falling factorials of i? (sec equation (3.C3)) 
compute these constants once we compute the derivative of a falling factorial: 

£*-(£)<i + .)*in<i + .>' 
= (-l)> ((*,-„-! - tf-*-l)2 " (^_! " iST.,W-l)) U - * - #• 

For tf = -2: 

= (-l)^1(Hi+1-l)(j + l)! 

57 

we can 

(3.72) 

a«? i>=-a (3.73) 

at?2 t?i = (-lH((HiM-l)2-^,
1 + l)(j + l)! 

i>=-a 

Assembling these results gives the constants of interest: 

Rt{-2) = (2t + 2)\(H2t+2-Ht+i) 

R'd-2) = ^y^ [H*+l - Hl+2 + <, - H<1\) + ft(-2). 

(3.74) 

Returning to equation (3.62) for the number of nodes in a diminished data structure, 
the careful study of differential equations and Pt(d) now bears fruit: 

Pt(*)T=- 
(2t + 1)! 

T     *(-*) Pt(-l)
V 

(3.75) 

The constant k is our remaining concern. Recall that A: appears after the first root, t? + 2, 
is factored from Pt(d), leaving the equation 

Rt{d)T = kv-'- 
_,     (« + !)! (3.76) 

We can use the initial conditions to compute Rt(d)T\v=i and thereby find a value for *. 
The first few terms of S, 

-2_« _j_ -2~«+i a~« S = cV + cV+,+...cV' + (3.77) 

HHi 



....,.,              ,„,_._„,.,„.„».,.„     .,,... ^     •_.-....._.,..,.,.,.»   f„>,™.„.    ....         .„    ,.. -^..   ,    „.,    .,.    .  .^.I^^^^J^w^to,.^..^,^^^ ^^. 

': 
58             ANALYSIS OF ALGORITHMS 

! 

give the first few terms of T: '; 

T=2xt + 2xt + i + --- + 2xit + ---. (3.78) 
" 

So initially wo know: ■i 

1 '      \2j!    t<j<2f (3.79) '.'! 

Or, changing variables and using the i? operator " *■' 

V J|u=1     \(-l)'2>!   t<j<t • (3.80) 

By rewriting ß(('J) slightly we have 
h 

t 

(3.81) 

so that ! ■.   .. ;■ -i 

Äi(0)r|„=, =X!(2f + 2)i2(2<-j)! 
, ■;■■■ 

A                    1 
£j (2< + 2-i)(2i + l- - j)                    (3.82) 

- 0(°r I °v i    *         1     1 v          '' \t + l     2t + 2J 

= 2(2*+l)!. 
i"                ■' .1 

'                               -  .'1 
Solving for A;: 

-   -ij! 

k = IitW)T\u=l+{2t+l)l 
= 3(2< + l)!, (3.83) 

'.'■    ■■".   '^ 

gives a dominant term of 
| 

T-     3               i           u-2| (3.84) 
' .-'  -■■■■"i 

2t + 2 Hit+i — Ht+i 

which expands with the binomial theorem: 1 
3                1 

(x")T—                                                        In   1    t>   1      1    \ (3.85) {X }I      2t + 2H2t+,-Ht+l
[n + l) + 0{n)- 

So the number of allocations nt-cessary to build a diminished tree is proportional to the 
number of keys and when t goes to infinity the allocations fall off inversely with t. 

,. -- V:." :.r;"ii 

/:''■-   ■' :"3 
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The o(n) error term on equation (3.85) is necessarily weak, since this estimate depends 
on the other roots of Ft(tf) and some of these roots are migrating (as t -» oo) towards points 
with -2 real part. In practice, however, the real part of these migrating roots is still positive 
when t - 9, as shown in Figure 3.8, and further analysis will suggest tha: we would never 
want .an accumulator as large as 19. so we may safely use an error estimate of 0(1) in the 
above formula. 

Another quantity of interest, the total memory usage, is closely related to the total 
number of nodes in the data structure. There are two approaches to the analysis. The 
more systematic approach uses a modification of the above grammar: 

V» 
1 
'4 

5§ 

5 - [B\m3xla]lS[/9k]MSinno]h | mPylMmtAh 

A —* bxxe Ibxxxc j bxxxxe. 
(3.8C) 

The amount of memory consumed appears in the exponents of the m's: 3 spaces for a tree 
node and 4 spaces for an accumulator. In general, an accumulator takes 2i spaces, although 
it is sometimes easier to program with 2£ + 1 spaces so that the accumulator can gracefully 
absorb (2t + 1) keys before splitting. 

The technique used here deserves highlighting. We have seeded the original grammar 
with a dummy variable, m, raised to the power of a quantity of interest, in this case the 
amount of memory used. We will repeatedly use this technique to study other quantities 
of interest, such as comparisons and memory probes. 

The conversion and solution of grammar (3.80) is almost identical to the node counting 
grammar just solved, so it is omitted. The average amount of memory used to store n keys 
turns out to be: 

J4T U l—S— <" + !> + °W • <3-87) t + 1 ti2t+7 - «e +1 

Comparing this with the 3n memory required for ordinary tree search, we see that the 
memory usage increases to y n for t = 1. but then shews improvement for t > 1, converging 
to j^jTi as t —► oo, a savings of 52%! 

An alternate approach to this analysis relates nodes and memory usage, so that only 
one of the last two computations is necessary. A diminished tree will always have an 
odd number of tree nodes, call this 2j - 1, of which j are dummy nodes and j — I are 
intern.il nodes. The j dummy nodes have j accumulators as right descendants. We can 
compute the total number of nodes, nodes = 3j - 1, and the total amount of memory, 
memory — (6 + 2t)j - 3, and then relate the two quantities: 

*' J 

(6 + 20,    j        ,x     , memory = (nodes + 1) — 3. (3.88) 

Since this is a linear relationship, the mean and variance of these two quantities are similarly 
related. 

S 
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The next analysis presents fresh difficulties, but it also answers a critical question 
about the usefulness of the new data structure: on the average, how many comparisons are 
required to find a key in a diminished tree? This involves studying path length in much 
the same way we studied paths in ordinary trees, using an index on the nonterminals to 
record their depth within the tree: 

•?* - \B]qkr,a-lSktli/9h]MSk,l[nno]h | ylMAkh 

Ak - bqktlxqk'7xc | bqk' Xxqk<7xqk»xc \ bqk>lxqk>ixqk*3xqk>*xe. 
(3.89) 

Each x in the tree is prefixed with q raised to a power equal to the number of comparisons 
necessary to find the key stored at that location. The total number of q's in a tree divided 
by the number of keys is the average successful search time for the tree. 

The grammar converts to an equation, 

r(2« + i) w(v)(.+..rv.v 
(3.90) 

where Sk is a function of x and q. Applying the Q operator to this equation we find that 
QSk -. Sk . i, so by the fixed point theorem of Chapter 1, 5t can be expressed as a function 
of itself: 

(ft  4-   1\ f(2*-* 1) 

* = «(,   )(« + i)/       (WSi)(,,)f 
V ' J (3.91) 

This has a differential form 

5r:)=^2t + l^ + i)^g(s(, 

with initial solution: 

To find the mean of the total path length we let 

T=§-Sx dq 
«-1 

(3.92) 

(3.93) 

(3.94) 

and then differentiate equation (3.92) with respect to q and set 7=1. 

r<*-n = ^+iyt +1}^ +1)(6,(0), + 2Su)(xSt,i + T{t))\       (305) 

Here we have used the chain rule to differentiate QSM. Once q is set to one 5j becomes 
S = 1/(1 - x) and can be replaced using the formula: / 

S<*> = 
(1-x) t u (3.96) 
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This yields 

(l-i)2,+,)r(2'+,)-2(2t + l)^(l-x)'r(t) = (2< + l)!^^ + (2( + l)!-"^f^. (3. «TO = If.f4.tv 2t + l+<7t4.l\\ -2(< + 1)j. r.ro7) 

And with the substitutions w = 1 - i, and t? = v^ wc find a familiar form of differential 
equation with a familiar polynomial Pt(d)- 

2t+l     2(f-f l)(l-tQ' 
Pt{d)T= -(2t + l)!( 

pt(d) = *2«±i + (-i)«2(2« + l)'-±ide-. 

(3.98) 

This time however there is an inhomogeneous term, -(2t + 2)! v~7, with an exponent that 
matches the dominant root t? = -2 of Pt(#), a situation dealt with in equation (3.48). This 
gives a leading term of 

••~2hiü 
r=-<2t + 2>!*(-2)   • 

Replacing v with 1 - i and applying Zavc's identity yields 

1 
(xn)T 

#2M3 ~ Hi -V1 
(ffn+1-l)(r»+l) + o(n). 

(3.99) 

(3.100) 

Comparing this with the leading term of equation (3.28), 2(#n + i - l)(n - 1), we see 
that when t = 1, diminished searching already shows an advantage (12/7 versus 2 in the 
constant) over ordinary searching. For large n this is a 14% improvement in the number 
of comparisons necessary for successful searching. As t grows large the leading constant 
converges to l/ln2, a 28% improvement in the number of comparisons. 

However, wc must not rejoice prematurely since the next, linear, term in the expansion 
can have a dramatic effect on the usefulness of the algorithm. Compare 

with 

2NlnN + 2N 

^■NlaN + QN. 

(3.101) 

(3.102) 

While the second formula is asymptotically 14% smaller than the first, the break even point 
is larger than a million. Fortunately iiv break even point for diminished searching is 
considerably smaller, but in order to satisfactorily analyze the algorithm wc must compute 
the constant in the second term of the expansion. 

To obtain this constant we return to the solution of the differential equation. After 
•d + 2 is factored from the equation there is an undetermined constant, Jfc, in the remaining 
equation: 

Rt(d)T^-(2t + 2)\-r + -i+
y—-J-. (3.103) 

I 

I 

i 

\ 
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When the other roots arc removed, k remains in tlic solution: 

_     -(2*+ 2)! Inv     ,„      „,,   R'J-2)    1 it        1 T -    I ,   ./   — + (2( + 2)! ~A-=^ — + „ ,   .. — + 
Rt[-2)     v* ß«(-2)3 v2     Rt(-2) t/J (3.104) 

The constant k is found by setting v = 1 in equation (3.103) and computing Rt(d)T\u^i 
from the initial conditions. Based on equation (3.93) the first few terms of T are: 

'■(cn-)-+((,n-k,+-*(e'n-h 
This gives initial conditions of 

(3.105) 

or 
„>,       _ JO 0 < i < t 
tf_ru,i - |(_i)»J-!((>+») _ i)     t<;<2< 

(3.106) 

(3.107) 

We can now compute 

i 

Rt{*)T\„=i = £(-l)'(2t + 2)U*±+T\ o = l 

3=0 

= D« + 2)q«-»!((2'^'+2)-i) 

= (2t + 2)!fLti__L_V 
v ' ^    2        2t + 2y 

(3.108) 

So k is given by 

it = (it + 2)! 
^    2        2t + 2 y 

(2t + 1)! 

(3.109) 

Then by applying Zave's identity to equation (3.101), and using the results /?«(-2) and 
Rt(-2) computed already, we get the desired solution: 

{xn)T = 1 

Hit+2 - Ht+i 
(ffn+,-l)(n+l) + 

__J (l±l_Hw     Ht+i lHglt-H™ 1    \ 
n»,t-Ht»[ 2   ~Y     2- + i + 2'H^---H—l-rri)(n + l)+o{n) 

(3.110) 

3   / 
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The table below summarizes these constants for small values of t. The break even column 
on the right shows when an accumulator of size t proves better than an accumulator of size 
t - 1. For t = 1, the algorithm performs better than ordinary tree search once n exceeds 
20. 

Half Accumulator 

t 

Coefficient of 

(ffn+1-l)(n + l) 

Coefficient of 

(n+1) 

Break even n 

t with t - 1 

No accumulator 

1 

2 

3 

4 

2 

^ ~ 1.714 
7 

60 
37 ~ 1622 

512 ~ 1.570 
533 

2520     tFtn 
7^ ~ 1549 1627 

-1 

-^-.245 

290 -.212 
1369 

193060      Mn  ~ .680 
284089 

3118374 
2647129 

20 

210 

4.3 x 104 

1.5 x 108 

•a 

Many quantities of interest can be analyzed in a way similar to the analysis just 
completed. For example, perhaps the most realistic estimate of the cost of successful 
searching is the number of memory references made by the algorithm. The diminished tree 
algorithm wastes 3 memory references on the dummy nodes but then recoups some of this 
loss on the linear, one probe per key, search of the accumulator lists. If we assume that one 
probe is necessary to find the root of the tree, then the appropriately weighted grammar 
is: 

(3.111) 
Sk -* [8\q7k*<a\lSki i\f„h}hlSk n|mno] | ylhlAkh 

Ak - bq7k+Szq7k+*xc I bqik+3zq7k + W' *"5*« | bq*k+*xq9k+Wk+WM*e- 

This time the infinite set of equations is resolved with a double application of the Q operator, 
Sk + \ — Q7Sk- The average number of probes for a tree of size n turns out to be: 

2 

Hu+2 — #I+J 

1 

(ffn+1 - l)(n + 1) 

 1 | -— + 2Z/"jt+j-4fft+i+2 
tt<1)    _ u'.V »    \ 

(3.112) 

To study comparisons in unsuccessful searching, we insert v's between each of the nodes 
in the accumulator lists. Any new key will land in one of these slots, and the exponent of 
the q will encode the number of comparisons used to locate the correct slot. 

Sk -»[BlxlSk + ihlSk+t | ylhlAkh 

Ak-bq ̂ lxqk+3xqk''ic\bq k + lxqk*2xqk^xqkiiC bqk+lxqk<2xqk+axqk+*xq-^ 
k+4t 

(3.113) 

U..-.IJ 
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This set of equations is resolved with the operator qQ, and the generating function has 
coefficients 

1 
//2, + J - 7/(4 1 

(ffn + 1-l)(n+l) + 

*™-//,+1 i^~ + 2//2-2-2/f^i + 1-2//2(+,-i/t+T-2rr2j(n+1)- 

(3114) 
Dividing by n + 1 gives the average number of comparisons in an unsuccessful search. 
Equation (3.114) compares favorably with a similar quantity for ordinary tree search: 

2(tfn+1-l)(n+l). (3.115) 

However, the most interesting quantities for unsuccessful searching are the memory 
reads and writes, especially in cases where the accumulator lists arc splitting. Treating 
writes separately from reads, we obtain a grammar for writes: 

Sk -» [8\xlSk+iMSk+i I ylhlAkh 

Ak — bwixw,xwe I bw*xwixw'ixwc | bw*+nxw4^nxws+nxw3+uxwi + 11e. 
(3.116) 

Most of the w exponents correspond to moving segments of the accumulator lists and 
writing the new key. But when the accumulator is full there is an extra cost for creating 
new tree nodes and copying half the old accumulator into a new accumulator. This is 11 
in the above formula, and will be t + 9 in general (t for copying half the accumulator, 6 
for writing the fields of two new dummy nodes, and 3 for rewriting the old dummy node 
and its pointers so that it contains the median key). Solving (3.116) yields a generating 
function with coefficients equal to the average number of writes: 

1 (t + 1      1        4   \ , 

Hu+,-Htn   {-2- + 2 + m){n + i) (3.117) 

This is slightly worse than the 4 writes required for ordinary tree search. 

Memory reads are set up as follows: 

S*-» [fl]xlS* MWSk+i \ylhlAkh 

Ak 

"xq xq 

bq,k' 4xq2k < *xq2k + 4£ \ btj2k ♦ 5*,a* '-"*," "xq7k+*e | 
^2* it-i 3rn2k-i 0 f 3.r„2M 0 r3T„2t h6 ( 3„„2iK>+S 

(3.118) 

'xq- •xq- e. 

In most cases the algorithm will use 2fc + 2 reads to reach the accumulator, and then it will 
read the entire accumulator, cither to find the proper location for the new key, or to move 
the keys that were not searched. When the accumulator is full, there is extra rending (3 
probes in equation (3.118), and t + 1 in general) to remove the median and the larger half 
of the accumulator. 
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This family of equations is resolved with q7Q*, and solved with the usual techniques: 

2 

Hit+i - Ht+i 
(Hn+l-l)(n + l) + 

This is to be compared with 

4(£rn+i-l)(n + l) + (n + l), 

(3.119) 

(3.120) 

for ordinary tree search.   To get the average number of memory reads we divide these 
equations by n + 1. 

Without knowing the exact costs of various machine operations and the nature of the 
compiler used it is difficult to make a precise recommendation for the use of diminished 
searching. The figures below summarize break even points for some of the fac'ors likely to 
affect the problem. They are based entirely on memory reads and writes and the assumption 
that they both cost one unit of time. 

100% 

Percentage ol 
Successful 
Searching 

50% 

0% 

O ■ Ordinary   M n = Median of n 

38  80 

10 100 K 

Figure 3.9 Break Even Points and the Ratio of Successful and Unsuccessful Searching 
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O = Ordinary   Mn = Median of n 

Cost of Allocation 

(Memory Accesses) 

Figure 3.10 Break Even Points and the Cost of Node Allocation 

Of course the exact choice of algorithm depends on a combination of the equations 
of this section with appropriate cost estimates. Nevertheless, these figures give us a good 
perspective on the design space of the problem. Notice that median of 3 is completely 
skipped; it is better to use cither median of 5, or ordinary tree search. This jump was 
anticipated by equation (3.87), showing that total memory use increased for median of 3; 
it appears that median of 5 is better for both access time and memory use. 

The designer should be particularly sensitive to the way memory is allocated, since tliis 
can significantly affect the choice oH. With a simple stack allocator the best choice oft is 
usually 2 (median of 5). If a complicated memory manager is used, then larger values of t 
will greatly reduce the number of allocations (see equation (3.85)), decreasing the constant 
on the linear term, and shifting the break even points. In the region of 1000 keys, a choice 
of t equal to 3 or 4 becomes attractive. 

Finally it is worth noting two features not. shown in Figures 3.9 and 3.10. These 
figures show break even points between algorithms—not points of substantial advantage. 
To obtain a point where half the asymptotic improvement is realized, a good rule of thumb 
is to square the break even point. 

The figures also ignore improvements due to block memory access. Many larger systems 
fetch blocks of 4 8 words from main memory, and have fast instructions for moving blocks 
of memory. Both of these features harmonize well with diminished tree searching. 

■K^AWMM 
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CHAPTER 4 

GENERATION AND RECOGNITION 

While the previous chapter used labelled grammars to analyze algorithms that were, 
at least on the surface, unrelated to labelled formal languages, this chapter is devoted to 
algorithms that operate directly on the grammars. Since a grammar describes a family of 
combinatorial objects, it is reasonable to ask all the standard questions about that family: 
Can we generate a member of the family uniformly at random? Can we generate all 
members of the family? Except we ask these questions in a more general setting: Can we 
build a system to accept an arbitrary grammar and then generate all objects, or generate 
objects uniformly at random from the specified family? 

Such a general-purpose system is possible. It takes as input a labelled grammar, and 
then provides a uumber of functions related to the grammar. These functions fall into two 
categories. The generation category includes: 

1) Computing the size of a specified family of combinatorial objects. 

2) Selecting an element by rank within such a family. 

3) Generating an clement uniformly at random from the family. 

4) Generating all elements in the family. 

The specification of a family has two parts. The grammar provides what might be 
called a shape description; it could, for example, constrain the strings to represent permu- 
tations in cycle format: 

P - C°bP | e 

C - x°R (4.1) 

R-+xR\e. 

The user must also provide a sixe description, that is, counts of critical characters in the 
string. For this grammar the user might specify 3 6's and 6 I'S. With both a shape and a 
size description a general system can count the family members (there are 225 permutations 
of 6 elements with 3 cycles) or generate instances at random (such as xiXiX^bxsXibxtb). 

Hereafter, we will refer to those characters whose occurrences are of interest as critical 
characters. In the last example x and 6 arc critical. The number of critical characters is 
the dimension of the problem, and the counts of critical characters in the size description 
form a characteristic vector. By convention, the count of the labelled character will appear 
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08 GENERATION AND RECOGNITION 

in tlio first component of the vector. Returning again to the above example, we have a two 
dimensional characteristic vector (0,3). 

The second, rerojuifion, category is, in a loose sense, the inverse of the generation 
category. It includes: 

1) Testing if a string can be derived with a grammar. 

2) Ranking a string within a specified family. 

For example, ;. tester would reject X3Xi6i2^ since it cannot be derived with the above 
grammar, while a ranker might give xix^bxib a rank of 2 within the family of permutations 
on three elements having two cycles. The rank has no absolute meaning; we do, however, 
expect that each member of the family will have a different rank, and that the ranking 
function of this category is an inverse of the selection function of the preceding category. 

These generation and recognition problems have received considerable attention in the 
literature. There are special purpose algorithms for various combinatorial objects, and 
general frameworks for large classes of problems [Nijenhuis 1978] [Wilf 1977 and 1978] 
[Williamson 1976]. The interest stems from numerous applications: Hypotheses can be 
tested with complete searches. Algorithms can be studied empirically with random input. 
And selection and ranking algorithms can serve as perfect hash functions. 

The general-purpose algorithms of this chapter capitalize on the close connection be- 
tween labelled grammars and generating functions. Since the algorithms are closely related, 
we will begin with the simple counting problem and then explore the difficulties presented 
by more complex functions. The descriptions below are restricted to labelled formal lan- 
guages with the box operator. All the algorithms generalize to more complicated partial 
orders, but the details would obscure the basic features. 

For purposes of exposition it is also helpful to restrict the grammars so that the right 
sides of all productions have either two nonterminals or a single terminal. The start non- 
terminal is the only nonterminal that can derive an empty string, and in these cases, the 
stcart nonterminal cannot appear on the right side of any production. For ordinary formal 
Languages, a grammar in this restricted format is considered to be in Chomsky normal form. 
There are algorithms to remove r-productions, eliminate chains like A —♦ B, D —* C, and 
C —♦ D, and break up larger productions that will expand the grammar by no more than 
squaring the number of productions, and will not introduce ambiguity into an unambiguous 
grammar. (See [Harrison 1978; Chapter 4].) These same algorithms will work for labelled 
grammars as long as we take some care when we break up larger productions with the box 
operator. The production /' -♦ QRS°TU, for example, is equivalent to 

P 

Pi 

QP? 
RP? 

Pi - SaP3 ■3 

Pi 

(4.2) 

TU. 

In general, we can decompose a large production into tiny binary tree of two nonterminal 
productions, and then box every nonterminal on the path through the tree to the boxed 

■Mnatrtfttft« 
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GENERATION PROBLEMS CO 

clement of the original production. If boxes «ire h.-uidlotl this way, then the traditional 
algorithms for converting arbitrary context free grammars into Chomsky normal forms will 
also normalize labelled grammars. 

4.1 Generation Problems 

4.1.1 Counting 

Chapter 2 developed the direct correspondence between labelled grammars and integral 
equations in order to solve the equations for closed form generating functions, or at least 
to recover information analytically from the equations. In this section we arc interested in 
solving these equations mechanically for specific terms of the series expansion. This can 
be done by iterating the equations (in a carefully chosen order) until the desired solution 
is reached, but before we explore the method of iteration, we need to understand the basic 
computation step. Suppose that the nonterminals of the grammar arc P,Q,R,..., and 
that the terminal characters z, o, and 6 are critical (x being the special labelled character). 
Each nonterminal will have a three dimensional series expansion: 

P(x,a,&) = £>,*,£afc6', 
i,*,l 3' 

(4.3) 

with integer coefficients in a matrix P associated with the nonterminal. The (j,k,l) entry 
in P is the number of different strings derivable from P having j x's, fc a's, and I 6's. 
A production l:ke P -* QR indicates that the convolution of the Q and R matrices will 
contribute to the terms in P: 

Pjki «- Pju + £ o >*'] -m,fc-n,/-o • (4.4) 

Notice that the convolution has an extra factor (£). Hereafter this will be called the split 
factor, since it accounts for the splitting of labels between the nonterminals. In general, 
the split factor depends on the box operator. If Q is boxed in the above production then 
the factor is (^l\), or if R is boxed, the factor is (JTn

1). Boxing removes one from the 
corresponding term (m or j - m) in the binomial coefficient. 

Equation (4.4) above highlights one of the difficulties of computation. Pjki can depend 
on most of the matrix entries in Q and R, so we must compute all the matrices together. 
One way to avoid conflict is to compute the entries in an order that always increases the 
sum of their components. Every location (j, fc,/) with j + k + l = ti* computed before any 
location with j + k + l = t + l. However, this order docs not resolve all the problems that 
can arise. Returning again to equation (4.4), if we have Q0oo nonzero, then Rjki should be 
computed before Pjki- So even within a particular location we must follow a special, safe, 
order of computation among the nonterminals. 

To find the safe order we identify those nonterminals, like Q0oo above, that can derive 
strings that arc free of critical characters. Such strings will be bo called pseudo empty. 
Algorithms that identify nonterminals that derive pscudo empty strings are well known, 
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although they appear in the guise of computing functional dependencies [Ullman 1980], or 
testing for emptiness of a language [Alio 1072]. 

Definition. A safe order of computation is a linear embedding oftlte following partial 
order. N, < N} (read iV, precedes JVJ if there is a production Nj ~» NtNk or 
N] —> NkNi and Nk derives a pseudo empty string. 

If »here is a cycle in the partial order, e.g. .IV, < Nj < Nk < A\, then the count is ill defined; 
the cycle generates an infinite number of derivations with a fixed number of occurrences of 
the critical characters. 

Altogether, we have described the following, iterative, approach to computing the 
nonterminal matrices: 

for t *— 0 to oo do 

for j *- 0 to t do 

for Ic «— 0 to t - j do 
begin 
l<-t-j- k; 

for each nonterminal P according to the safe partial order do 
compute P]kl using equation (4.4); 

«id 

The running time of this algorithm can be expressed in terms of 

d The number of characters critical to the counting 
n The number of nonterminals 
m        The maximum number of occurrences of any given critical character. 

For most applications d and possibly n are small fixed constants, while m grows large and 
has the greatest impact on the space and running time of the algorithm. 

The parameter d is the dimensionality of the problem. Each nonterminal has a d- 
dimcnsional array of coefficients, with m being the maximum coordinate in any dimension. 
Thus the space required is 0[nmd). 

The time necessary to fill the arrays is G(nm2d) since each of the 0{mnd) entries 
ran require an 0(m'1) convolution of two series whenever there is a production with two 
nonterminals on the right side. 
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4.1.2 Selection and Generation at Random 

The next step in difficulty, beyond counting derivations, is to produce strings derived 
by a grammar. If we anticipate that the typical user will first specify a family of objects 
with a grammar, and then make numerous requests for random or selected members of 
the family, then our efforts should be directed at streamlining the latter process. For this 
reason the exposition of the section is reversed. The section begins with the description of 
a walk structure that is well adapted to random generation and selection problems. Every 
combinatorial family has its own walk structure and this is used repeatedly and efficiently 
to generate strings. Only later in the section will it become clear how to create a walk 
structure from a grammar. 

Labelled strings are generated by a w.ilk procedure that traverses the data structure. 
The procedure has two arguments, an integer c specifying the string (or substring) to be 
generated, and a list of labels that will appear on the special characters of the generated 
string. For the tirst call to walk, c is specified by the user (in the case of a selection request) 
or generated at random. We initialize the label list with 1...J where j is the number of 
special characters expected in the output. 

The walk structure is a binary tree with two types of nodes: trivial and drastic. All 
nodes contain an integer v. specifying the number of different traversal that can originate 
at the node, and possibly two pointers to descendant nodes. Trivial nodes arc depicted as 
diamonds in the figures that follow. 

M 
Figure 4.1  Trivial Nodes 

When the traversing procedure reaches a trivial node, the integer carried by the pro- 
cedure, c, should be in the range 0.. .v - 1. A comparison of c with the value of the left 
descendant, w(, determines the direction of the walk: if c < r, the procedure traverses the 
left descendant, otherwise c is replaced by c - vt and the right descendant is traversed. 

A drastic node can also have two offspring, but in this case both descendants are 
traversed. Each drastic node corresponds to firing a production in the original grammar, 
so there is a production right hand side such as o or QR associated with the node.  The 

.' 
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traversing procedure will cither output the terminal character a, or traverse both descen- 
dants to produce substrings for Q and ß, in which case there are two additional fields /j 
and Zr in the drastic node; they are the number of labels given to Q and R respectively. 

Production Used 

Figure 4.2 A Drastic Node 

Recall that when j special characters are expected in the output, the top level call to 
the traversal procedure begins with a link' d list of 1 through j. At a drastic nodes with 
descendants, the procedure splits the current list of labels into two lists for the descendents. 
If a box operator is applied to either noi.^rminal then the smallest label is moved to the 
designated group before the splitting process. 

At a drastic node the integer c carried by the traversing procedure is divided into three 
integers, one for each descendant, and one to control the splitting of the labels: 

cr *— c mod vr 

c *— c div vr 

ci *— c mod wj 

a *— c div vi. 

(4.5) 

Using that portion allocated for splitting, s, a list of labels can be partitioned into two 
groups of sizes a, and 6: 

while a + 6 > 0 do 
ifs< (a^+4) then 

begin 
add the next label to the a list; 
a *- a - 1; 
end 

else 
begin 

• — -(Mi*); 
add the next label to the b list; 
b*-b-l; 

end 

fcitimiMniltSyiffillil 
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Tin- loop preserves tin' invariant that n • h I.ihrls remain to lie processed, and ()<."< (n0 )■ 

Since ("/) - ("„'i'") '("'« ') w«' <•<•»> p.-irtitioti the r;Mi>v 0. (''„'')) into two parts, one 

rorrrspoinlius: to putting the first label into the n group, in which rase tin- remaining 
problem i> to partition <i - I ♦ h labels into groups of si/c a - 1 and >>. ami s is appropriately 

in the range   Ü. ("   ' Jh))    Larger values of .< correspond to putting the first label in the- h 

group, and so s will be in the appropriate range after subtracting ("„'J  )   In 'hi* way the 
invariant is preserved. 

We now have all the ingredients for the walk procedure: 
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procedure uii!k{ tree, c. label.*) 

case irrr'node.type of 

trivial: 

if r < tree''.left''.value then 

call wnlk(trer' .left, c. labels) 

else 

call tcalk{tree' .right.c - tree'.left* value, labels); 

drastic: 

begin 

if fiic production is of the form P ~* a then output a 

else 

begin 

use (l.ä) to separate c into ej, rp and fi: 

if a l)i>x appears in the production then 

remove the smallest integer from labels: 

use s t{> split labels into left label* anil right.labels: 

if a hex appears in the production then 

return the smallest label to the appropriate group; 

call iralk{treclleft.ci.lefl labels); 

call walk(trec].right.cr. right.labels): 

end 

So the walk procedure is a straightforward hybrid of tree search and tree traversal. 
Trivial nodes are "searched" and drastic nodes are •traversed" in order to generate labelled 
terminal strings. 

Ü 

'-41* 

JS 

M a 

Of course an obvious question remains: how do we construct a walk structure for a 
given family of combinatorial objects? The answer is surprisingly simple: we use the algo- 
rithm of the preceding section for counting the number of objects and replace the additions 
and multiplications in the computation with sfrticfur.ij additions and multiplicalions that 
patch together pieces of walk structure. 
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A trivial noilc results front the addition of two nodes, either drastic or trivial.   The 
value lield oi the new node :s the sum of the value fields of the combined nodes: 

Figure 4.3  Summing Two Nodes 

A drastic node is the result of the multiplication of two nodes: 

Figure 4.4  Multiplying Two Nodes 

Most of the fields of the drastic node (such as the production used and the number of 
labels going left and right in the split) are provided by the context of the multiplication. 
The split factor 5 is computed according to the number of labels going left and right, and 
the value field of the new node is the product of S and the values of the two descendants. 

In this way. the counting procedure of the preceding section can be adapted to compile 
a walk structure. To improve the walk structure, it is advantageous to postpone summing 
the nodes together as described above. Instead of immediately creating a trivial node 
whenever a sum occurs in the counting procedure, we first collect all those nodes that will 
eventually be part of the same sum. Once the sum is complete, a balanced walk structure 
can be built from the collected nodes for guaranteed logarithmic search time on a single 
search, or Huffman "s algorithm (Knuth 1973; Section 2.3.4.5] can be used to build a walk 
structure that is optimal when averaged over ail possible searches. 

rjn'tytf 



. st.\*W>,-*HtoJghtM» 

ENVMEItATION 75 

I 

i 

■)* 

I 
1 
a 
■?. 

' i. 

Th«' running »inn- and spaa- requirements for the selection an«! generation at ran- 
iloin algorithms fall into two classes: prc-computation to create a walk structure from a 
grammar, ami post-computation to generate objects using the walk structure. The cost of 
prc-coinpntation is based on the counting algorithm describe.! earlier. The time required 
remains i)(»ivi'"'). and because each multiplication and addition creates new data structure, 

the space required is also ()(tim    }. 

Post-computation requires a bit more reasoning: since each drastic node corresponds 
to the tiring of a production in the grammar and since each traversal generates a string 
of the grammar, the traversal will visit as many drastic nodes as there are productions 
contributing to the final string. If the final string is of length 1. then we can use at most I 
productions generating terminal symbols, and at most i productions of the form /' -» QR, 
since each nonterminal must generate at least one terminal. So the string generation can 
re.piire at most 0{l) productions, and the traversal ran visit at most ()(l) drastic nodes. 

The traversal of a drastic node involves a splitting operation on a label list (0{m) 
time) and the time necessary to find the next drastic node. Between drastic nodes there is a 
network of trivia! nodes produced by the summation in the counting algorithm. Since there 
are at most ()(md) terms summed together (the convolution of two d-dimcnsional series) 
we expect to visit at most (){md) trivial nodes, or if the balancing technique described 

above is used. (){d\nm) trivial nodes. 

Altogether the time necessary to generate a string is ()(l{m + r/lnm)). 

4.1.3 Enumeration 

Our next and last problem within the generation category is the systematic enumera- 
tion of all members of a combinatorial family. For a simple solution to tin* problem we can 
use the selection algorithm of the preceding section, sequencing the algorithm through all 
possible values. However, since most of the differences between the >th and (j 1 l)st mem- 
bers of combinatorial families are confined to small regions of their strings, it is senseless 
to completely regenerate the strings. The unnecessary regeneration is avoided by loading 
the generated characters into a bulfer. and then reusing all but the right end of the buffer 

for subsequent strings. 

In the preceding section we developed a walk algorithm that produced a single string 
from an integer input. In this section the algorithm that enumerates all strings is called 
all-walks; it will occasionally use the walk algorithm as a subroutine. 

All-walk* uses the data structure compiled for walking, but it treats the nodes differ- 
ently. At a trivial node the all-walks procedure calls itself recursively on both descendants 
(recall that the walk procedure chooses only one descendant). At a drastic node the pro- 

cedure uses a set of nested loops to cover all possibilities: 

if thv production is of fiie form /' -♦ « then append a to the buffer, and output tlw buffer 

else the production it of tlw form P --> QR, so ... 

for all possible splits «if the label list do 

begin 

for « «-- 0 to t/| - 1 do 
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begin 

call u-nlk{tTcr].lrJt.n.lrJt labels), appending the result* to the buffer; 

call all-walks on the right descendant; 

end 

end 

4.2 Recognition Problems 

We now shift our attention from the generation of strings to the recognition of strings 
supplied as input. There are two algorithms. The user can supply a string and a grammar 
and ask the system to verify that the grammar derives the string. This is accomplished 
with the accepting algorithm. There is also a ranking algorithm that carries this procesa 
one step further; it returns an integer that uniquely identifies the string within the family 
generated by the grammar. 

I j 

:$ 

4.2.1 Accepting 

Accepting a string is a straightforward application of dynamic programming, a tech- 
nique that m. ivy authors have used to parse context free languages. We assume that the 
input string is of li-ngth /. and we construct for every nonterminal an (I + 1) x (I + 1) 
upper triangular matrix with entries initially false. The (ij) entry will he set true if the 
nonterminal can derive the piece of string between locations i and j - I inclusive. 

There is one other (/ + 1) x (/ + 1) upper triangular matrix A/, called the minimum« 
matrix, whose (i,j")th entry contains the smallest label between locations i and j - 1. 
The miniiiMinis matrix is easily computed with the recurrence M(iJ) - inin(A/(i,> - 1) 
A/(i + 1,»). 

The nonterminal matrices are more difficult to compute. Their entries are processed 
in increasing order of the difference j - i. Initially the near diagonal entries (i, i + 1) arc set 
true for any nonterminal with a production P -* a, where a matches the input at location 
i. The upper right corners are computed last. A true entry in the upper right corner of 
the start nonterminal matrix indicates a successful derivation. 

For a given location in the matrices. (»',», all matrices are computed together, using 
the safe order among nonterminals described already in Section 4.1.1. When a n Jiitciminal 
P with production P -* QR is processed, the production is matched with the input string 
between i and j - 1. with the understanding that Q and It can derive variable length 
strings, so we must try all possible midpoints m in the range i < m < j - 1. An outline of 
the algorithm follows. 

for s <— 2 to kmjth(inj)ut) do 

for i *— 1 to kngth(input) - s + 1 do 

begin 

j *- 11 + 3 

for each nonterminal P in safe order do 

begin 

, / 
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r{i,j)-fal*e 
for each production possibility P —» QR do 

for m «— i + 1 to j - 1 do 
if Q{i, m) and R(m,j) and chock box operator then 

begin 

P(iJ) *- true 

goto found 

end 
found: 

end 
end 

The pros» nee of a box operator adds an additional check to the procedure. If a box is 
on a nonterminal, such as Q, then each time the Q matrix entry (t, m) is tested for true 
wc also check if M(i,m) = M(t',j"). Equality insures that, if the production were used to 
derive the string between » and j - 1, then the smallest label would appear in the proper 
location. 

The third data structure was used before in counting: 

3) Nonterminal count matrices, Pp. These contain the total number of derivations 
that start with the nonterminal P, and have a final string with characteristic vector p. 

4) Production off.-ct matrices, (P ~* QR)V- This is a new data structure that will 
be explained shortly. Each production has a matrix of integers that is addressed by two 
characteristic vectors, q and r, corresponding to nonterminals on the right side of the 
production. 

I "4 

The running time of the accepting algorithm is 0(n(/+l)3), where / is the length of the 
input string, and r» is the number of nonterminals. Each of the 0(n(l + l)2) matrix entries 
treated by the algorithm can require an 0(1} string match in the inner loop; together these 
derive the time bound. 

4.2.2 Ranking 

The ranking algorithm makes use of the following data structures. The first two are 
modifications of those used for accepting: 

1) Nonterminal substring matrices, P(i,j). Previously these contained true or false, 
depending on whet* er the nonterminal could derive the string between t and j - 1. Now 
they contain false or the rank of the derived string. We assume that the grammar is 
unambiguous; ambiguous grammars would require a set of ranks. 

2) Minimums matrix, M(t,j). This used to contain the minimum label in the string 
,«-. between i and i - 1. Now each entry contains an ordered list of all the labels used between 
W&                         i and j - I. with the smallest label first. few 

!;•■% 
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Note tli.it there are two ili-1 inetly different m.itrircs associated with each nonterminal. 
The sudstriii;; matrix will always he two dimensional (since it is addressed by two locations 
in the string), and will be denoted with the indices following the nonterminal character: 
P(i.j). The count matrix has a variable number of dimensions d depending on the number 
of characters critical to the counting. It is denoted with subscripted indices P}u or with 
a vector as a subscript /'p. The subscripting distinguishes count matrices from substring 
matrices. 

The accepting algorithm of Section 4.2.1 is used as a basis for the ranking algorithm 
of this section. Instead of setting P{i.j) true in the inner loop of the code, wo actually 
compute the rank by the formula 

/'(«.;) - (* Qq + G(t.»o) Rr + R(m.j) + (P QR) v (4.0) 

where most of the above formula need:- further explanation. In essence, the formula inverts 
the operations of Section 4.1.2 for select ion. Whereas equations (4.5) divided the control 
integer c into three parts by modular arithmetic. Equation (-1.6) above assembles three 
parts, .«. ^(i. HI), and R(m.j) into one integer. 

In Section 4.1.2. s was used to split a list of labels into two groups. Here .« is computed 
by merging two groups of labels: those used in the Q substring (found in Af(i.m)) and 
those used in the I! substring (found in M(m.j)). 

S+-Q; 

until a ami h lists are empty do 

if "held < hhead then 

begin 

move the (i list head into the output 

a «— u - 1 

end 

else 

begin 

move tlic It list head into tlio output 

6-6-1 
end 

This accounts for all of equation (4.C). save the last. o/rscf, term {P -» QR)V whose 
purpose is to invert »he trivial nodes of Section 4.1.2. The trees of trivial nodes between 
drastic nodes result from a summing process: when trivial nodes are used fo: selection, a 
search based on the control integer c guides the piogram through the trivial nodes to a 
particular drastic node, and the firing of a specific production. A subrange of the possible 
values off will all land at the same drastic node. In the inverse direction, wo have computed 
an integer for the firing of a production and we must add an offset for the base of the 
subrange. The offset allows for the contribution of other terms in the sum. 

Offset matrices can be computed from the walk structure by applying the procedure 
rompute.oJ[st:l[PpA)) to each entry of the nonterminal count matrices: 
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procedure compute .ojJsct(trcc, sum) 

case tree].node .type do 

trivial: 

begin 
call compute.oJJsct(left descendant, sum); 

sum *— sum + value v at current node; 

call compute.oJfset(right descendant,sum): 

end 

drastic: 

(production) (char  of M ,2onfcr/nJ(rhar. of 2nd nonterm) *~ mm'< 
end 

This completes the inversion of the selection algorithm. The running time is the same 
as the accepting algorithm, 0(n(l + l)3), since the only significant extra computation is 
the merging of the lists, which is 0(1) and so can be absorbed by the 0(1) time used to 
match strings. The major new complication of the ranking algorithm is the 0(m2d) sized 
offset matrices; it is ironic that the simplest nodes of Section 4.1.2 are the source of the 
most complication for the data structures of this section. 

4.3 Overall Evaluation 

For the reader interested in the details of implementation, there is a PASCAL version 
of the counting, selection, and generation at random algorithms in Appendix C, along with 
a sample program execution. In the appendix the strict requirement for Chomsky normal 
form is relaxed, to allow the user more flcxiblity when entering grammars. 

While theoretically the running times and space requirements of the algorithms are 
all polynomial, the implementation experience highlights two limitations likely to cause 
trouble: 

1) The integer size of the host computer. Most families of objects grow exponentially, and 
so even the simplest counting algorithm must use large integers. Our memory estimates 
have been based on the number of integers, not on their total number of bits. 

2) The memory requirements. This becomes particularly acute when the number of critical 
characters, d. exceeds two, so that the memory needed for selection or random generation 
is worse than 0(m4), where m is the maximum number of occurrences of any critical 
character. 

On a 36 hi' PDP-10 computer, with 256K words of virtual memory, and typical grammars 
from Chap'er 2, these limitations where provoked when m « 12 and d « 3. 

The algorithms of this chapter constitute a general purpose generation and recognition 
system for combinatorial objects. For a specific problem, si'ch as the generation of random 
labelled trees, there are special purpose algorithms that will do better than the general 
approach.   If necessary, trees can be generated in 0(m) time rather than 0(m2) time. 

if 
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Nevertheless the value of a general system is dear: rather than writing a Computer program 
for each new problem, the user is designing a compart grammar. In fact it is easy to 
describe combinatorial families with grammars of fewer than 8 productions for which no 
special purpose algorithm exists. (See the sample run in Appendix C for trees counted by 
leaves and single descendant nodes.) 

On the other hand, there are frameworks for selection, enumeration, and generation «it 
random that are more general thai; the labelled grammars described above. Most notably, 
Wilf has developed the idea of a path through a directed graph, each node having a variable 
number of labelled outward arcs [Win 1977 and 1978] Almost any combinatorial family 
with a recurrence relation can be placed in one-to-one correspondence with a graph that 
resembles the recurrence, and then such problems as generation at random and selection 
are solved with general purpose algorithms on the graph. 

The chief distinction of the techniques of this chapter are that, rather than using a 
single path through a graph, the paths are allowed to fork at certain, drastic, nodes. While 
this branching complicates the internal workings of the algorithms, it permits a greatly 
simplified specification of the combinatorial family, and essentially automates the onc-to- 
onc correspondence between traversal of the graph and combinatorial objects. 

In conclusion, it is worth asking a more reflective question: how can the polynomial 
algorithms of this chapter generate objects from families that arc inherently exponential 
in size? This is possible because of the high degree of decomposability present in families 
that can be described with labelled formal languages. When a nonterminal A" appears 
in a partially derived string it is treated in a manner that is independent of the size and 
contents of the string. The nature of the enclosing string may affect the labels given to 
the string derived from N. but the processing of N uses a arbitrary list of labels that can 
contain any ordered subset of the integers. This independence, apart from the splitting 
of labels, makes special treatment for substrings unnecessary -the walk structure can be 
highly folded, with numerous pointers to small subproblems that are used repeatedly in 
the construction of larger objects. This is the source of the savings that make it possible 
to encode an exponentially sized family with a polynomial sized data structure. 



CHAPTER 5 

CONCLUSION 

r*     . 

If we think of enumeration problems as falling into three broad classes: those pertaining 
to nnlabolled structures, those requiring a labelling with distinct labels, and those making 
repeated use of labels, then the main result of this thesis is to extend the use of formal 
languages from unlabelled to distinctly labelled problems. 

Of course it is natural to ask why we bother with formal languages if we already have 
combinatorial techniques to deal with these problems. There are several reasons. First, the 
formal language approach is general. We have seen already in Chapter 2 that many of the 
classic generating functions can be derived from labelled formal languages. Second, there 
is an extremely close connection between specification and enumeration. Once wc have a 
formal language description we obtain immediately an integral equation for an enumerating 
generating function. Formal languages have been extensively used for specification, often 
in applications where enumeration is not important, so it is natural to tie a large class of 
enumeration problems to a familiar descriptive tool. 

In computer science two major areas of application follow from the connection forged 
between language theory and enumeration. We can use labelled formal languages as analytic 
tools in the analysis of algorithms. Chapter 3 developed this idea on two sample problems, 
the second of which is a new algorithm for tree searching that is interesting in its own right 
and should see practical use in appropriate applications. Another major use for labelled 
formal languages is in controlling a general purpose system for counting, generation at 
random, and enumeration of combinatorial objects. Chapter 4 describes the algorithms 
necessary for processing labelled formal languages and appendix C includes a running 
system of this nature. It is no longer necessary to write a different algorithm for each 
combinatorial problem. 

Perhaps the largest open area of research is in the intermediate problems that arc 
neither nnlabolled nor distinctly labelled, but make repeated use of a collection of labels. 
Mathematically these problems arc unified by the Polya-Redfield theory of enumeration 
[Polya 1937] [Redfield 1927], but as yet there is no systematic way to generate the objects 
of such a family; Burnside's lemma stands between the counting and the construction of 
family members. The work of It. C. Read is a significant step in this direction [Read 1978]. 
His approach eliminates many of the redundant family members before they are checked 
for independence. But there are many fast, special purpose, algorithms (sec for example 
appendix D) that challenge »is to pursue this problem further. 

iiiiriri 
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The algorithms (if Chapter 4 seem ripe for asymptotic improvement of their running 
times. Ktmg and Traub have developed methods for the solution of polynomial equations 
that improve the running time of the counting algorithm of Section 4.1.1 [Kung 1978]; it 
would be nice to develop similar techniques for the selection and generation algorithms. 
The accepting problem is probably equivalent to matrix multiplication, and there are likely 
to be methods that work considerably faster on limited subsets of labelled languages. Both 
these problems need further exploration, and the second problem suggests yet another open 
.area: the classification of labelled grammars. As yet there is no easy way to characterize 
those languages requiring more sophisticated partuu orders than those denoted with the 
box operator, and to separate the various uses of the box operator. For example, the 
grammars of Sections 2.3.1 (alternating permutations), 2.3.7 (Eulerian numbers), and 2.4.1 
(left to right maxima and minima) probably all belong in the same class, and yet they use 
ihe box operator in a way that makes them clearly beyond the classificaÜon techniques of 
ordinary formal languages. 

••'<■'-■-■'-'-^ 
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APPENDIX A 

BELL POLYNOMIALS AND LAGRANGE INVERSION 

It is frequently necessary to obtain the coefficients of a generating function that is the 
composition of several well known functions. Suppose that h = / o g, where /, g and h 
have Taylor expansions like 

To compute hi in terms of /< and ft we use a matrix arrangement of the Faa di Bruno 
formula introduced by Jabotinski [Jabotinski 1947]. Each function / has a matrix: 

mu        mia       mis        ...    \ 
m»       m»        •••        , (A.2) 

m33       ...     I 

where m*, is an exponential Bell polynomial of the coefficients of /: 

mii = Bii(!uh,...). (A.3) 

(Note the unfortunate transposition of indices.) These polynomials are defined implicitly 
by the equation: 

(A.4) «»'<•) = 5>,-.-(/i,/a,-..)y^. 

from which we can derive various other expressions for Bji 

k,   / r  \ k v    __ü__ fäy1 (är(ä\ 
J^+.....*i'*i!*3!- VU/     W     V3!/ 

k,-Hl, + 3k3+      -I 

(A.5) 

B'*""   „   „ *?        *i!fci!*3!... V 
k,-Hl, + 3k3 

The first few polynomials are 

//i    /a      /s      ...\ 

( /fT:J (A.6) 

By summing along the columns we obtain another family of polynomials that are associated 
with Bell's name: 

1* = 5><. (A.7) 
»>i 

The top row of the matrix contains the the Taylor expansion of / and each successive 
row ein be computed with the following algorithm: 

1 

:"3 

di 

?ü 
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for j *- 1 to oo do 

begin 

mij ♦- f,- 

for t «— 2 to j dc 
begin 
m0 *- 0 

a i— j        (a = (£) in fiie 7oop bdow ) 
for k <— 1 to j: - i + 1 do 

begin 

m,j <- mij + a/fcm,_ i,y_fc 

o *— a k + l 
end 

mij «- mij ft 
end 

end 

The most useful property of these matrices is given by the following theorem. 

Theorem. IfMj and Mg «ire the matrices off and g then M^ = M/Mg is the matrix 
for the composition, h = f o g. 

Proof: 

= SM/(t,i)M9(j,fc)y*^ 

= X>fc(,\A)y<^. 
i.fc 

For the Taylor expansion of h only the top row of Mh need be computed: 

Corollary. lfh = fog then 

(tH,h2,h3,...) = (fiJ2,f3,...)Mg. 

(A.8) 

(A.9) 

Theorem. If a function f is given implicitly by h(f) = z then the matrx for f is 

., 
>                      ''s 

■■:; 

[ '■ -1 
■"■: 

i.- . .       .,; 

i                 ■    s 

&■ - ■; ,-i 
,   .j 

?•  ..       -:H 
i-,        ■'*$ 
■■■ ...-    .- /^ 

>"..".        -'"■} 

■ ■        ■ ■■ % 

■ ■ I 

■ 

t          ' 'I 

'<-; ■■   ,'     "0 ,.               .fi 
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•. ■  ■                        ! 
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Proof: [Comtct 1974; p. 149] Consider the product of Mh. wid Mj, where 

(A.11) 

by equation (A.5). 

»<i<fc  ' V ' 

= *•■* 

(A.12) 

"I 

Corollary. (Lagrangc inversion) If a function f is given implicitly by h{f) = z then 
the coefficients in the power scries expansion for f are: 

A-ü-i).(0(^)"' (A.13) 

Here are two frequently encountered matrices: 

f{x) = e'-l 

(!)        (?) 
M/ = | {2j        Stirling Numbers, 2nd Kind 

g(x) = -ln(l-i) 

111        0 
0 M9 = Stirling Numbers, 1st Kind 

(A.14) 
i 

i^f^ 

As an example of the techniques of this appendix, consitk-r the following equations 

from Section 2.3.4: _ 
1     XC (A.15) 

$:y'.:,i& 
A 

4 
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The coefficient of IP in P is the composition of three functions:  4, — In(1 - i), and T(x). 
We can compute the matrix for T according to (A.10): 

*h(k,n)=(~~^{T"-k)e"T 

-G:9" 
The matrix for - ln(i - x) is given above, 

M-'n{i  z)(j,k) = 

(A 16) 
n-t 

(A. 17) 

and the first row of the matrix for |[ has a 1 in the j'th column. Multiplying these together 
wc obtain an expression for the coefficients of P, given already in equation (2.45): 

<"S>'-?0 (A.18) 

fciteBftYiriitii ̂ **£M 



APPENDIX B 

DIMINISHED TREE SEARCH 

1. Arbitrary Median Tree Searching. The following «algorithm combines a tree 
search with a linear search. When the tree search portion of the code hits a leaf, it branches 
to additional code to search a small linear list of size at most It. If insertions cause the 
linear list to exceed size 2t then a new tree node is created and the list is split into two lists 
of size t. The additional tree balancing provided by the median of It + 1 splitting improves 
the running time of the algorithm. 

define plus.inf = mnx''nt 
define half.sizr. =3    { This is t. } 
define median = half.size + 1 
define overflow = half.size + half.size + 2 

program search(tty, o\tpj ); 
type link = ]node; node.type - {"ree,list); 

node = record case node.type of 
tree: (left : link; key : integer; right : link); 
list: (keys : array [1 .. overflow - 1] of integer); 
end; 

var p: link; in.key: integer; 
(Declare the Initialize Procedure e); 
(Declare the Find or Insert Procedure 2); 
begin initialise (p); 
while true do 

begin twtie(tiy,'Key>u'); read(tty,in.key); writeln(tty,find(in.key,p)); 
end; 

end. 

I      I 

# 

*-"a 
F I. 
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2.    A Standard Tree Srarli Algorithm. 

The find procedure t.;kos a key. A;, and a pointer to a tree, p. If jfc is in the tree, then 
tind returns true, otherwise Juhc is returned, and k is inserted into the tree. Most of the 
work is performed hy the inner loop of a standard tree search algorithm. Since the loop 
is included without modification, any improvements that the programmer might design for 
standard tree searching (such as hand coding the inner loop) will also he improvements to 
diminished tree searching. 

In order to activate the linear list code without modifying this loop the leaves of the 
tree contain a dummy +oc key. a nil left pointer, and a right pointer to a linear list. The 
standard tree seaich will find the nil pointer and take the "unsuccessful" loop exit. 

define success = 1 
define quit = 2 

(Declare the Find or Insert Procedure 2) = 
function jind(k : integer; p : link): boolean; 

label success, quit; 

van', temp: integer; leftJist. leftJree, rightJist,right.tree: link; 
begin while true do 

with pi do 
begin if k > key then 

begin p «— right; 
end 

else begin if k = key then goto success 

else if left = nil then (Search the right linear list, and goto success or quit 3) 
else p «— left; 

end; 
end; 

success: find «— true; 
quit: end 

This cotlo is used in section 1. 

'i-vtemmmßm)M&mmmmm<mifis!säm UUmmmi¥X!mMMmi;mmmMa^^A.>wv#Wil 
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3. Searching a Linear List. 
The following code is a standard linear list search. It is designed to work for arbitrary list 

sizes (controlled by the half.size parameter). Even though this code is executed only once 
for each search, as opposed to O(Iogn) passes through the loop in the preceding section, 
the programmer should take care to make this run efficiently; log« is close to a constant, 
hi particular, the code below is NOT THE BEST approach to the problem since half.size 
is fixed during execution. It is better to choose a fixed half.size and unroll the loop, as 
exhibited in the special median of five variation following this code. 

(Search the right linear list, and goto success or quit 3) = 
begin » ♦— 1; 
with right] do 

begin while true do 
begin if keys [t] < k then 

begin i *- i; + 1; 
end 

else begin if fceya[»'] = k then goto success 
else begin (Insert k and Shift Subsequent Keys 4)- 

find <— false; goto quit; 
end; 

end; 
end; 

end; 
end 

This code is used in section 2. 

4. Inserting a Key into a Linear List. 

(Insert k and Shift Subsequent Keys 4) = f|i 
begin repeat temp <— k; k «— tej/s[«]; ieya[»] ♦— temp; i *— i + 1 '■*'■' 
until k = plus.inf; 
if i = overflow then (Split the Linear List 5) 
else fcej/.i[t] «— plus.inf; 
end 

This code is used in section 3. 
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5.    Splitting a Linear List. 
A linear list has grown to size 2 * half.size + 1 so it is split. The median clement becomes 

a new tree node with right and left dummy nodes for sons. The dummy nodes each point, 
to lists of half.size keys. 

(Split the Linear List 5) = 
with p] do 

begin left.list «- right; key «- left.list}.key s\median\; 
left.list} .kr.ys[mediim] «- plus.inf; new (right-list, list); 
for t «— 1 to half size da 

begin right .list}.keys\i\ «- left-list }.keys\median + i]; 
end; 

right-list}.keys[median] *- plus.inf; new (left, tree); new (right, tree); 
left].key 4- plus.inf; right].key *- plus.inf; left}.left - nil; right].left *- nil; 
left].right *- left.list; right].right «- righUist; 
end 

This code is used in section 4. 

6.    Initialize the data structure with a tree node and an empty list. 

(Decl-.ro the Initialize Procedure 6) = 
prof .idure initialize(varp : link); 

b.-gin new(p,tree); p].key *- plus.inf; p].left —nil; new (p] .right, list); 
]>}.right }.keys[l] *- plus.inf; 
end 

This code is used in section 1. 

2£Srs352Es 
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1. Median-of-Fivc Tree Search. 

define plus.inf = maxint 
define reps = 5 

program seorch(tty, output); 
type link = }node; node.type = (free,list); status = 'a' .. *e'; node = 

record case node.type of 
tree: (left : link; key : integer; right : link); 
lint: (next-free : status; a,b,c,d : integer); 
end; 

var t: link; in.key: integer; 
heap.bottom, time, test.size, start, test-number,j, tesLexponent: integer; 
result: boolean; (Initialize Procedure 2); 
(Find or Insert Procedure 3); 
begin mnrk (heap.bottom); 
writeln(onlput, 'SpecialuMedianuOfuFive*, reps : 6, "uurepSuOfueachuSize'); 
test.size *— 1; 
for test.exponent *— 1 to 14 do 

begin test.size «- 2 * test.size; start *~ runtime; 
for test.number «— 1 to reps do 

begin initialize(t)', 
for j *- 1 to test.size do result *- find(trunc(random(0) * (plus.inf - l)),t); 
release (heap-bottom); 
end; 

lime «- runtime; writeln(output, 'TestuSize: *, test.size : 5, 'uTime:', 
(time - start): 7, "uTime/Size:', ((time - start)/test.size) : 8 : 4); 

end; 
end. 

2. Initialize the data structure with a tree node and an empty list. 

(Initialize Procedure 2) = 
procedure initialize (var t : link); 

begin new(t,lree); 
with ft d° 

begin key «— plus.inf; left «— nil; new (right, list); right ].next-free *- *a"; 
end; 

end 
This code is used in section 1. R* 
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{ These labels will be vised in the block move code } 

3. A Standard Tree Search Algorithm. 

define success = 1 
define quit — 2 
define a.a — 101 
define <i_6 = 102 
define a.e = 103 
define a.d = 104 
define a.e = 105 
define 6.6 = 106 
define 6.c = 107 
define b.d = 108 
define 6.e = 109 
define c.c = 110 
define c.d — 111 
define e.e = 112 
define d.d = 113 
define d.e = 114 
define e.e = 115 
define wrap.up = 120 

{Find or Insert Procedure 3) = 
function find(k : integer; t : link): boolean; 

label success, qu-t, a.a, a.b, a.e, a.d, a.e, 6.6, b.c, b.d, b.e, c.c, c.d, c.e, d.d, d.e,e.e, 
wrap.up; 

var right.list: link; e: integer; 
begin while true do 

with if do 
begin if k > key then t«- right 
else begin if k = key then goto success 

else if left = nil then (Linear List Search 4) 
else begin t *- left; 

end; 
end; 

end; 
success: find <— true; 
quit: end 
This code is used in section 1. 

'i ■'""-  '! 
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4.    Searching the Accumulator. Since the search loop is unrolled, a binary search is easy 
to implement: 

(Linear List Search 4) = 
with right] do 

begin case next.free of 
"a": goto a.a; 
'b': begin if k < a then goto a.b; 

if k = a then goto success 
else goto 6.6 
end; 

'c*: if k < b then 
begin if k < a then goto a.c\ 
if k = a then goto success 
else goto b.c 
end 

else if k = b then goto success 
else goto c.c; 

*d*: if k < 6 then 
begin if k < a then goto a.d; 
if fc = o then goto aucce« 
else goto 6_<f 
end 

else begin if k < c then 
begin if k = b then goto success 
else goto c_<f 
end 

else begin if k = c then goto success 
else goto d.d 
end 

end; 
"e": if A: < c then 

begin if k < b then 
begin if Jfc < a then goto a.e; 
if k = a then goto success 
else goto b.e 
end 

else if A: = b then goto success 
else goto c.e; 

end 
else begin if Jfc < rf then 

begin if A: = e then goto success 
else goto «Le 
end 

else begin if k = d then goto success 
else goto e.e 
end 

end; 
end; 

z'" 
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(Shift Code 5); 
(Split Code 6); 
find «- false; goto quit; 
end 

This code is used in section 3. 

5.    Unrolled Block Move. 

(Shift Code 5> = 
e.e: e «— k; goto wrap.up; 
d-e: e *- d; 
d.d: d *~ k; goto wrap-up; 
c.e: e <— d; 
c-d: d «— c; 
c.e: c *— k; goto wap.up; 
6_e: e «- d; 
b.d: d«— c; 
6_c: c ♦— 6; 

6.6: 6 <— k; goto uwrtp.up; 
o.e: c «— d; 
a.d: d *— c; 
a.c: c *— b; 
a.b: b «— a; 
a.o: a «— fc; 
This code is used in section 4. 

6.    Wrap up an unsuccessful search, splitting if necessary. 
(Split Code 6) = 
wrap .rip: if next.free £ 'e' then next-free *- succ [next-free) 

else begin next-free <- 'c'; neu;(ri</A:./«3t,/Mt); right.list].next-free «- 'c'; 
right.list].a <- d; right-list^.b *- e; 
with tf do 

begin fcey — right te-, new (left, tree); left f. key *- plus.inf; left^left «- nil; 
left\.right «- right; new (right, tree); right^.key <- plus.inf; right lieft <- nil; 
right].right *- right-list; 
end; 

end; 
This code is used in section 4. 

u 
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APPENDIX C 

A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS 

1.    Global Procedures and Parameters. 
This program accepts a grammatical description of a family of combinatorial objects, 

counts the number of specified objects, and generates objects at random or by rank within 
the family. The grammar must be context free, but it can contain additional "box" 
operators to control the labelling of one of the terminal characters, so that stich things 
as labelled trees and permutations can be described with grammars. The rctider should be 
familiar with the "box" operator. 

There are three major divisions in the code. One section loads a grammar into the pro- 
gram's data structures. Another section counts the number of derivations of the grammar 
by a process that amounts to tensor multiplication, and at the same time generates a "walk" 
structure. The third section traverses this walk structure and generates a specified string. 
The data structures and low level support procedures are shared by all three sections of 
code. 

By convention, the single letter prefix of an identifier, e.g., x.variable.name, groups 
together common variables and types. The following interpretations should help the reader: 

l input 
s symbol table 
p production possibility 
m nonterminal matrices 
w walk structure 
I label list 

program generality); 
type (Global types 8) 
var (Global variables 3) 

{Global procedures 4) 
{Matrix procedures 36) 
(Walk structure builders 45) 
(Grammar loading procedures 11) 
(Counting procedures 40) 
(Walking procedures 58) 
(Command processing 63) 
begin initialize; commands; 
end. 

*- J 
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2. Various parameters that control t!ic rapacity of the program arc defined here, 

define buffer.size - MO    { Maximum inimbrr of char on an input line} 
define max.prod .symbols -- 7    {Symbols in a production possibility} 
define viax.countable.terminals - 3    { Terminals critical in counting } 
define max.total ^ 12    { Total occurrences of each critical char in the final string } 

3. The mult array will contain the multinomial coefficients, defined by 

(«+> + *)! mult[i,j,k] 
«! j\ Jfc! 

(Global variables 3) = 

mult: array [-1 .. 1, -1 .. max.total. - 1 .. max.total] of integer; 
Sec also sections 5. 9. 22, and 43. 

This rode is used in section 1. 

4.    Initialization of the multinomial array. The recurrence 

(i + i + k\ = (i + i + k-l\  . (i + j + k-l\     (i + j + k-L\ 
\i   J   k)     \i-i   j   k) + {i   >-i   k) + \i   j   k-l) 

is used to create mult[i,j,k]. 

(Global procedures 4) = 
procedure initialize; 

var i,j.t: integer; 
begin for i « 1 to maxAotal do 

begin mu«[O.i,-!)«-0: mti«[0, -l,i] - 0; mt!tt[l,i\-l] - 0; mtift(l, -1,i] ♦- 0; 
for j . 1 to max.total do mult[-l,i, j] «- 0; 
end: 

mu/j[0.0.0] «~ 1; 
for t <— 1 to max.total do 

for t «— 0 to 1 do 
for i «— 0 to i - t do 

m«/t[«',j,f-,-j] - rriH/i[,-l,j,t-,-j] + mu/t[,)j_1j_t_J] + mu/t[,ijJ..t-_y_1j. 
end; 

See also sections 6. 7, 23. 24, and 57. 

This code is used in section 1. 

5.     BulFer and variables for input. 

(Global variables 3) += 

{.buffer: packed array [l .. buffer.size] of char; 

i.scan.i.line.size: integer;    { Current and final positions in the buffer} 
help.file: file of char;    {A place to find help } 
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6.    Hero arc two fund.iirirnt.il operations.    The macro capital.letter  is true when its 
argument is a capital char and the function min returns its smallest parameter. 

define capital-letter (*) ~ ((# > 'A') A (# < 'Z')) 

(Global procedures 4) + = 
function min{i,j : integer): integer; 

begin if i < j then min *- i 
else min <— j; 
end; 

7. The procedtire i.linc reads a line of input into the global buffer, discarding blanks and 
commas. If letters.only is true, the remaining characters must be capital letters. The last 
character is stored at location i.line.size in i.buffer. 

define start.over = 3 

(Global procedures 4) += 
procedure iJine(letters.only : boolean); 

label start.over; 
var new.scan, originalscan: integer; 
begin start-over: if eoln(tty) then readln(tty);    {A quirk of tty input} 
read (tty, i.buffer : i.linc size); originalscan «— 1; newscan *— 1; 
while originalscan < i.line.size do 

begin i.buffer[newscan] «— i.buffer[originalscan]; 
if -^(i.buffer [originalscan] 6 [*,_,', *, *]) then 

if letters.only A -(capital-letter (i.buffer [new.scan])) then 
begin write(tty,'Error:ucapitaluletter(8)uexpected,utryuagainu..-u'); 
goto start-over; 
end 

else newscan «— new.scan + 1; 
originalscan <— originalscan + 1; 
end; 

i.line.size *— newscan — 1; iscan «— 1; 
end; 

:M 
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8.     Global Diit«i StiucturinR. 

The cMitr.il data structure is .1 symbol table that is indexed by capital letters, and 
contains information about the letters used in the grammar. An entry for a nonterminal 
;n the symbol table has several pointers. The first (prodr-) points to a list of production 
possibilities.  If. for example. Ar ran be rewritten in three ways, S, T, and U, 

I 3 

■i 

N^S\T\ U, 

then there will be a linked list of three pr;ijht.side records hanging from the prods field of 
the N entry in the symbol table. The second (matrix) points to a multidimensional array 
that is indexed by the occurrences of characters critical to the counting. Suppose the user 
has declared A' to he a special labelled character, and F and G to he countable terminal 
symbols We can lind out the number of strings derived from N that have G A'*s, 5 F's 
and 1 (7s by looking at the (C.5,1) entry in the matrix associated with Ar in the symbol 
table. If we were simply interested in couiting these occurrences, then an integer entry 
in this matrix would be adequate. However, we also want to generate objects with the 
specified numbers of terminal symbols. This is accomplished with a walk structure that 
will be described later. Each matrix entry is a pointer to the walk structure (w ptr). The 
integer count of derived objects can be found in the value field of the first walk structure 
node (w.node). 

The additional fields of a nonterminal in the symbol table (appears.in. derive.i_r.mpty, 
preceded.by. and followers) are used to derive the safe order of computation. This is 
an order among nonterminals that will be described in detail later. The appears An field 
contains a linked list that points to all productions containing the nonterminal; it is a 
reverse directory for the nonterminals. The boolean derives .empty will be set true once it 
is determined that the nonterminal can derive a pseudo empty string (free of all countable 
characters). The last step in the computation of the safe order is a topological sort of a 
partial order among the nonterminals. This partial order is represent.«] by followers, a 
linked list of all nonterminals that must follow in the partial order, and preceded.by, an 
integer counting the occurrences of the nonterminal in other followers lists. 

(Global types 8) = 

n.ptr = f«Mst; c.ptr = ]cJist; m.ptr = ]tn_axis; p.ptr = "[p.righLsidt; 
w.ptr = f to. node; 

sJype = (undefined, uncount.term, count.term, labelled, nonterm); 
s.data = record case status : s type of 

labelled, countJerm: (index : integer); 

nonterm: (prods : p.ptr; matrix : m.ptr; appearsAn : a.ptr; derives.empty : boolean; 
preceded.by : integer; followers : c.ptr); 

end; 
Ser idso sccüons 10, 21. 35. 39. <4, TUH! 50. 
This code is used in section 1. 

i_ 
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9. Here is tlio actual symbol table (s.table) and an array containing those terminal 
symbols critical to the counting (index.symbois). The first element of index.symbois is 
always the special labelled character, and number„indices records the total number of entries 
in index.symbois. For the example of the preceding section, index.symbois would contain 
X, F and G and number.indices would be three. The sJable is initialized before each new 
grammar is input. 

(Global variables 3) + = 
index symbols: array [1 .. max.countable.terminals] of char; 
number „indices: integer; 
s.table: array ['A* .. 'Z'] of s.data; 

10. The production possibility data structure. 
Suppose that A' is the labelled character, F and G are counted terminals, H is an 

uncounted terminal, and A and D are nonterminals. Tk.n the production 

N - XFAaGDGH 

generates the following record: 
1) string contains the characters XFAGDGH and size is set to the length of string, in 
this case 7. 
2) suh.string includes only the nonterminals AD, and sub.size is set to 2. 
3) bxd is the location of the box operator in string. IT the above production the third 
character is boxed. 
4) special.bxd, jirst.bxd, and second.bxd are all cither zero or one, depending on whether 
the special character, the "rst nonterminal, or the second nonterminal are boxed. Here we 
have Jirst.bxd e<;ital to one. and the others zero. 
5) adjust contains 1, 1, and 2. corresponding to 1 A". 1 F, and 2 G's in the string. The 
adjust array summarizes the effect of the production on the counts of index.symbois in the 
derived string. 
C) p. left.side is N. 
7) contributors is a count of the number of characters in the string that arc counted 
terminals, plus the number of nonterminals that might contribute countable characters. 
In this example contributors is 6. 

(Global typ,.-s 8) +~ 
characteristic.vector — array [1 .. max.countable.terminals] of integer; 
p.right.side = record size: integer; 

string: array [1 .. max.prod.symbols] of char; 
bxd, special.bxd, Jir.it.bxd, second.bxd: integer; 
adjust: characteristic.vector; 
sub.size: integer; 
substring: array (1 .. 2] of char; 
p.left.side: char; 
contributors: integer; 
p.next: y.ptr 
end; 
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11.     Loading a Grammar. 

define done..loading.grammar = 1 
define flush.production = 2 
define   'nne.gcttinj.pToductions — 3 

(Grammar loading procedures 11) = 
procedure loading .grammar; 

label done .loading .grammar, flush.production, done.gelling.productions; 
var left.side. cur.char: char; p.possibility: p.ptr; i: integer; 

(Loral variables for computing the safe order 25) 
(Local variables for loading matrix entries 54) 
(Internal grammar loading procedures 20) 
(Safe order procedure 33) 

begin (Initialize for computing the safe order 28); 
wrt.eln(tty); (Get declarations 12); 
writcln(tty); (Get productions 14); 

writeln(tty); (Compute the safe order 29); 
done.loading.grammar: end; 

This code is used in section 1. 

J 
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12.     The declaration portion of loading a grammar. 
The HUT is asked to classify f;io letters of the grammar into four categories. A letter is a 

nonterminal :-.r a terminal tv _. ..« labelled, counted, or uncounted. Note that the user must 
supply a a'u.J labelled clian-ter, even for unlabelled grammars, and that E is a built-in 
empty string. (The user dc".'.. need to say E, but E'm will not be output in a generated 
string.) 

{Get declarations 12) = 
s.table\'E'].status *— uncount.tcrm; write(tty, 'LabelleduCharacter»u'); 
iJine(true); 
wh.lc i.line.size / 1 do 

begin v)rite(tty, 

'Enteruausingleulabelled1Jcharacteru(dummyuifunecesBary)u.•-u')i 
i.line(true)\ 
end; 

index.symbols[1] «— i.buffer[l\; 
with s_iaMe[i_6u/7cr[l]] do 

begin (Reject double definitions by going to done.loading.grammar 13); 
status «— labelled; index *— 1; 
end; 

tvrite(tty, "CounteduTerminai(s)»u');  iMne{true); 
if i.line.size > max.countable.terminals then 

Le^a; writeln{tty. "Errorrutheulastutwoulinesuhaveumoreuthanu', 
mar .'ountable.terminals : 0, *ucharactersucriticalutoutheucounting'); 

goto done.loading.grammar; 
end; 

while i.scan < i.line.size do 
begin index..iymbols\i.scan + 1] «— i.buffer [i.scan]; 
with sJable[i.buJJer\i.scan}\ do 

begin (Reject double definitions by going to done.loading.grammar 13); 
status *— count.term; index <— i.scan + I; 
end; 

«..ican <— t.scan + 1; 
end; 

number.indices «— j'.scan; 
write(tty, *UncounteduTenninal(8)»u'); i.line(true); 
while i.scan < i.line.size do 

with s.table[i.buffcr[i.scan]] do 
begin (Reject double definitions by going to done.loading.grammar 13); 
status «— uncount.term; i.scan +- t'.aean + 1; 
end; 

write(tty, "Nonterminal(s)»u"); i.line(true); 
while i.scan < i.line.size do 

begin with s.table\i.buffer [i.scan]] do 
begin (Reject double definitions by going to done.loading.grammar 13); 
status *— nonterm; matrix ♦- nil; prods *— nil; appears.in *— nil; 
derives .empty *— false; preceded.by «— 0; followers *— nil; 
end; 

i.scan «— i.scan + 1; 

M 
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end; 
Tliis code is use«! in section 11. 

13. Reject redefinitions of a character. The code below checks the previous definition of 
a character to be sure that it is not being redefined. It always appears in the context of a 
with .iJnblc[tMJJ'erli.scan\} do. 

(Reject double definitions by going to done.loading.grammar 13) = 
if status / undefined then 

begin writeln(tty, 'Error:u',i.buffer[i.scan], 'uisualreadyudefined'); 
goto done .loading.grammar; 
end 

This code is used in sections 12, 12, 12, and 12. 

14. The production portion of loading a grammar. 
Each line of input is scanned. The program expects the left hand side to resemble N -, 

followed by a right hand side consisting of production possibilities separated with vertical 
bars. The box operator appears as an up arrow in the input. 
{Get productions 14) = 

begin while true do 
begin writc(tty, "Production»,,,-); Uine(false); 
if {i.buffer[l} = "IT) A {i.buffer{2\ = 'P') then goto done.getting.productions; 
(Scan the left hand side: goto flush.production if it has bad format 15) 
(Scan the right hand side; goto done.loading.grammar if it has bad format 16) 

flush.production: end; 
done.getting.productions: end 
This code is used in section 11. 

15.    The left hand side should consist of a single nonterminal followed by an arrow. 

(Scan the left hand side; goto flush.production if it has bad format 15) = 
left.side — i.bujfer[l}; 
if -^(capital.letter(left.,side)) then 

begin '«n7e/n(«i,,-Errorluproductionushouldubeginuwithuauletter'); 
goto flush.production; 
end; 

if s..tablc[lcft.side\.status / nonterm then 
begin writeln{tly, 'Error:u-,lefLside, 'ushouldubeuaunonterminal'); 
goto flush.production; 
end; 

if i.buffcr[2\| # '■*' then 

begin writeln(tty, 'Errorru+uexpecteduaiteru' JefLside); goto flush.production; 
end; 

This code is used in section 14. 

S-:? 
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16.    The right hand side may contain several production possibilities separated by vertical 
bars. The code below rejects small letters and excessively long strings. 

(Scan the right hand side; goto done.loading.grammar if it has bad format 16) = 
i.scan «—3; ]> .new {p.possibility); 
while i.scan < i.line.size do 

begin case i.bujjer[i.tcan\ of 
'I': (Finish a production possibility 19); 

: (Box the previous symbol 17); 
others: begin cur.char «— i.buffer\i.scan\\ 

if -^(capital.letter[cur.char)) then 
begin writeln(tty, 'Error:uunacceptableucharacteru', cur.char); 
goto done.loading.grammar; 
end; 

with p.possibility] do 
begin size *- size + 1; 
if size > max.prod.symbols then 

begin writeln(tty, 'Error: jaournoreuthaiiu' ,max.prod.symbols : 0, 
'ulettersuinuauproductiontjpossibility'); 

goto done.loading.grammar; 
end; 

(Include cur.char in the string 18) 
end; 

end 
end; i.scan <— i.scan + 1; 
end; 

(Finish a production possibility 10); 
This code is used in section 14. 
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17. An t indicates tli.it the previous symbol is boxed. In the record for the production 
possibility, bid is set the the location of the boxed character in the string, and one of 
first.bid. second.bxd. or speciaLbxd is set to one, depending on which nonterminal or 
terminal character is boxed. 

( Box the previous symbol 17) = 
with p.possibility \ do 

begin bid «— size; 
if size = 0 then 

begin writcln(tty, 'Error :unothingui8ubeinguboxed'); goto flush.production; 
end; 

case s.table\string\size\\.status of 
novterm: case sub.size of 

1: first.bxd — 1; 
2: second.bxd <— 1; 
end; 

labelled: speciaLbxd «— 1; 
others: begin writeln(tty, 'Error :u', string\size], 'ucannotubeuboxed'); 

goto done.loading.grammar; 
end 

end; 
end 

This code is usrd in section 16. 

18. Here is the code that adds a character to the string portion of a production possibility. 
If the character is a nonterminal then it is also added to the substring. The instructions 
below appear within the scope of a with p.possibility do. 

(Include cur.char in the string 18) s 
string[size\ «— cur.char; 
case s.table\cur.char\.status of 
labelled, count.term: adjust[s.table\cur.char].index] «- adjust[s.table{cur.char].index] + l; 
nonterm: begin sub.size <— sub.size + 1; 

if sub.size > 2 then 
begin writeln(tty, 

'Error:unoumoreuthanu2unonterminalsuinuauproductionupossibility'); 
goto done.loading.grammar; 
end; 

sub.string\sub.size] *— cur.char; 
(Prepare the appearance of a nonterminal for safe order computation 27) 
end; 

undefined: writcln(tty, 'Error:u'. cur.char, 'uisuundeclared'); 
end; 

This code is used in section 16. 

,v 
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19. Finishing off a production possibility. 
The scan has encountered a vertical bar, or the end of the line so it is time to finish a 

production possibility. There are two cases: 
1) The production possibility is free of nonterminals, and to the result of the production 
can be entered directly in the matrix associated with the left hand side nonterminal at the 
location of the adjust coordinates. (This part of the procedure will be considered Liter.) 
2) The production possibility has nonterminals and so is linked into the prods list of the 
left hand side nonterminal. 

(Finish a production possibility 19) = 
begin with p.possibility] do 

begin (Freparc the completion of a production for safe order computation 28); 
if adjust\l] > 1 then 

begin writeln(tty, 'Error:uonlyuoneu', index.symbols[l], 
'ualloweduinuauproductioriupossibility'); goto done.loading.grammar; 

end; 
if sub.size = 0 then (Enter a string of all terminals 55) 
else begin p.next *— s.table\left.side\.prods; s.table[left.side].prods *— p.possibility; 

end; 
write(tty, 'Loaded.uj', leftside, "u*u"); 
for i «— 1 to size do write(tty,string[i], 'u')', 
writeln [tty, "uwithuboxedupositionu", bxd : 0); 
end; 

p.new (p.possibility); 
end 

This code is used in sections 10 and 18. 

20. Here we initialize a production possibility by creating a new p.rightside and setting 
the appropriate default values. 

(Internal grammar loading procedures 20) = 
procedure p.new(varp.possibility : p.ptr); 

var i: integer; 
begin new (p.possibility); 
with p.possibility ] do 

begin bxd «— 0; speciaLbxd <— 0; first.bxd «- 0; second.bxd «— 0; size «— 0; 
sub.size *— 0; 
for i *— 1 to max.countable.terminals do acfj'usf [t]«— 0; 
end; 

end; 
This code is used in section 11. 

sA 
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r4 

21. Computation of the safe order. 
There are two kinds of lists used to compute the safe order. An aJist contains pointers 

to productions, and a cJist contains characters representing nonterminals. 

(Global types 8) + = 
aJist = record prod: p.ptr; 

a.next: a.ptr 
end; 

cJist = record /crier: char; 
c.next: c.ptr 
end; 

22. The safe.order, once it is computed, is available throughout the program. 

(Global variables 3) += 
safe.order,scan.safe.order: c.ptr; 

23. The decrement Jest.zero function subtracts one from its operand and returns true 
when the result is zero. 

(Global procedures 4) += 
function decrement-test .zero (var operand : integer): boolean; 

begin operand «- operand - 1; decrement.test.zero <- (operand = 0); 
end; 

24. The norm function sums the components of a characteristic vector. 
(Global procedures 4) += 
function norm(vector : characteristic.vector): integer; 

var index, temp.norm: integer; 
begin temp.norm «— 0; 
for index <- 1 to number.indices do temp.norm *- temp.norm + vector [index]; 
norm «— temp.norm; 
end; 

25. During the safe order computation a depth first searcli will used to process the the 
nonterminals. This is implemented with a stack called unprocessed. 

(Local variables for computing the safe order 25) = 
unprocessed, new.unprocessed, new.follower: c.ptr; 
new.appearance: a.ptr; 
tail.of.safe.order: c.ptr; 
scan.s.table, being-processed: char; 

This code is used in section 11. 

K   % 

26.    Initially the stack and safe order arc empty. 

(Initialize for computing the safe order 20) = 
unprocessed *- nil; safe.order «- nil; 

This code is used in section 11. 
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27. The fragment below builds a reverse directory for the nonterminals. It appears in 
the code that is loading production possibilities. The scan has encountered a nonterminal 
cur.char and already loaded cur.char into a p.possihility. In addition, a pointer to the 
p.possibility is linked into the appears.in list of cur.char. 

(Prepare the appearance of a nonterminal for safe order computation 27) = 
new (new.appearance); 
with new.appearance] do 

begin prod *— p.possibility; a.next *- s.table[cur.char].appears.in; 
end; 

s.table[cur.char\.appears.in «— new.appearance; 
This code is used iu section 18. 

28. If a production has no characters that are countable, and is free of nonterminals that 
might derive countable characters, then contributors is zero. In this case leftside is linked 
on the unprocessed list— it will eventually be processed and marked with derives.empty set 
true. 

(Prepare the completion of a production for safe order computation 28) = 
p.left.side *— leftside; contributors *— norm(adjust) + subsize; 
if contributors — 0 then 

begin new {new.unprocessed); 
with new.unproccssed] do 

begin letter *— leftside; c.next <— unprocessed; 
end; 

unprocessed «— new.unprocessed; 
end; 

This code is used in section 19. 
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20. Tlio snfo order is for roniputiiijt nonterminal matrices:. Suppose there is a production 
N — A. where A' and .1 are nonterminals, and we are Computing the (i.j.k) entries in all 
the matrices, then the entry for A must he computed before the entry for N. However, 
if thorp arc countable terminals, like A' and F. added to the right side of the production! 
N — XAF. then the computation of Ar needs an entry from A with a smaller norm. If we 
compute the entries in the order of ascending norm it is no longer necessary that A precede 
N. So precedence depends on the presence of critical characters. 

Precedence is further complicated by productions like AT -> AD, where N, A, and D 
are all nonterminals. If D might derive a string without countable characters (a pscudo 
empty string), then ,1 must precede N. For this reason the computation of the safe order 
is accomplished in two phases. The first phase identifies those nonterminals that derive 
pseudo empty strings. Then the precedence relations are apparent and the second phase 
can topologically sort the nonterminals into a linear order that is consistent with these 
relations. 

(Compute tin safe order 29) = 

(Mark those nonterminals deriving pseudo empty strings 30); 

write. (Hy. "Theuf ollowingunonterminalsucanuderiveupseudouemptyustrings :u'); 
for sran.s.tnble ♦- 'A' to 'Z' do 

with s.tablc\scan_s.table\ do 

if (status - riontcrm) A derives.empty then  writc(tty, 'u', scan.3.table); 
wntcln(tty); (Count tli.  number of predecessors for each nonterminal 3l); 
(Topologically sort the nonterminals into the safe order 32); 
write(ity, 'Theusaf euorderuis :u'); scan.safe.order — safe.order; 
while scan.safe.order / nil do 

with scan.safe.order f do 

begin write(tty, 'u'.letter); scan.safe.order «- c.next; 
end; 

writeln(tty); 

This code is used in section 11. 
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30. The nonterminals that ran derive pscudo empty strings arc identified as follows: when 
a grammar is loaded any production free of countable terminals and nonterminals causes its 
left hand side to be placed on the unprocessed stack. The loop below removes these "empty 
derivers" from the stack and, using the appears.in lists, finds all occurrences of the empty 
derivers in other productions and diminishes the contributors fields of these productions. 
When a contributors field is reduced to zero another empty deriver has been found, so it is 
pushed on the unprocessed stack. 

(iMark those nonterminals deriving pseudo empty strings 30> = 
while unprocessed / nil do 

begin being.processed *- unprocessed].letter; unprocessed *- unprocessed].c.next; 
with s.table [being.processed] do 

begin derives.cmpty «~ true; 
while appears.in ^ nil do 

with appears .inf. prod] do 

begin if decrement.test.zero (contributors) then 
begin new (new.unprocessed); 
with new.unprocessed] do 

begin letter «- p.left.side; c.next *- unprocessed; 
end; 

unprocessed «- new.unprocesscd; 
end; 

appears.in <— appears.in].a.next; 
end; 

end; 
end 

This code is used in section 20. 
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31. Once tlio empty dcrivers arc identified we can find all tlie precedence relations. If A 
precedes B then one is added to the preceded Jy field of D and D \3 linked in the Jollowtrs 
list of A. 

define add.scanAo (#) = 
begin r,cw [new.follower); 
with new.follower] do • 

begin letter ♦— scan.s.table; c.next <- s.table[tt].follower3; 
end; 

sJable\lt}.followers *- newjollower; preceded.by *- preceded-by + 1; 
end 

(Count the number of predecessors for each nonterminal 31) = 
for scans .table «— 'A* to *Z' do 

begin with s.table[scan.sJable] do 
if status = nonterm then 

begin p.possibility *— prods; 
while p. possibility ^ nil do 

with p.possibility] do 
begin if norm(adjust) = 0 then 

case sub.size of 
1: add.scanJo(sub.string[l}); 
2: begin if sAable{sub.string[l]}.derives.empty then 

addscanAo(sub.string\2]); 
if sAable[substring[2]}.derives.empty then add.scanAo(sub.string\\)); 
end 

end; 
p.possibility *— p.possibility].p.next; 
end; 

end; 
end 

This code is used in section 2U. 

32. The topological sort starts wit ii a scan of the symbol table, in order to find nonter- 
minals with zero preceded.by fields that arc ready to be placed in the safe order. 

(Topologically sort the nonterminals into the safe order 32) = 
for scans.table *- "A' to 'Z' do 

with sAable[scan.s.table\ do 
if status = nonterm then 

if preceded.by =0 then put.in.safe.order (scan.s.table); 
(Check that all nonterminals are in the safe order 34); 

This code is used in section 29. 
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33. When a nonterminal is moved to the safe order the precedcd.btj fields of each of it» 
followers arc diminished by one. If any of these fields reach zero more items are added to 
the safe order. 

{Safe order procedure 33) = 
procedure put.in.safe.order(now.safe : char); 

var new.safe.order: e.ptr; 
begin new (new.safe.order); new safe.order].tetter *— now.safe; 
if safe.order = nil then »afe.order «- new.safe.order 
else tail.of.safe.order].c.next «— new.safe.order; 
tail.of.safe.ordtr ♦— new.safe.order; tail.of.safe.order\.c.next <— nil; 
with s.table\now.safe\ do 

begin preceded.by « 1; 
while followers ■£ nil do 

with followers] do 
begin if decrement.test.zero(sJable[!etter\.preceded.by) then 

put.in.safe.order (letter); 
followers *— c.next; 
end; 

end; 
end; 

This code is used in section 11. 

■-•? 

34. 

(Check that all nonterminals are in the safe order 34) = 
for scan.s.table *- "A" to *Z' do 

with s.table[scan.s.table] do 
begin if status = nonterm then 

if preceded.by ^ -1 then 
begin writeln(tty, 'Errortuthereumustubeuaucycleuinutheugrammar'); 
goto done.loading.grammar; 
end; 

end 
This code is used in section 32. 
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35.     Matrix Data Structure ami Procedures. 

The datn structure anil code that fellows implements matrices with a variable number 
of dimensi <!)-•. There are number.indices dimensions all of size max.iotnl + 1. Each 
nonterminal will have one of these matrices containing pointers to the walk structure. 

A matrix consists of a series of one dimensional axes. The lower dimensional (interior) 
axes contain pointers to other axes; only the highest dimensional (exterior) axes hold the 
contents of the matrix. 

Normally access to the matrix requires a pointer dereference for each dimension. To avoid 
this, the array is addressed with a ;n_cnord that has extra fields to retain these pointers. 
If the same location is accessed, or if a change is made only in the highest dimension then 
the m.cnnrd will still hold the relevant pointers. 

An m^ptr is a pointer to an m^axis. 

(Global types s) +H 
m.axisJype. -- (interior, exterior); 
m.axis = array [0 .. maxJotal] of 

record case rn_axis.type of 
interior: (next.level : m.ptr); 
exterior: (entry : w.ptr) 
end; 

rn.coord = record symbol: char;    {This m.coord accesses the matrix for nonterminal 
symbol } 

int: array [1 .. max.countablt.terminah) of integer;    { Integer coordinates } 
ptr: array Jl .. max.countcbleJcrminats] of m.ptr    {Pointer coordinates} 
end; 

36.    Allocation and initialization of matrix axes. 

(Matrix procedures 30) = 
procedure m..new.axis(i : integer; var« : m.ptr); 

var j: integer; w: w.ptr; 
begin new(a); 

if 1 = number.indiees then    { This is the highest dimension. } 
for j *— 0 to maxJotal do 

begin new(w, trivial); 
with wf do 

begin value «— 0; w.next «— nil; 
end; 

a][j\.entry «- w; 
end 

else     { This is an interior dimension. } 
for j *- 0 to maxJotal do a]\j].nextJevel «- nil; 
end; 

Sec also sections 37, 40, nnd 41. 

Tina code is used in section 1. 
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37. This is a preliminary access procedure. It allocates unprohed axes if necessary, 
initializes them, and stores helpful pointers in the m.coord record. The m.locate procedure 
must be applied to an m.coord before any m.access operations. 

(Matrix procedures 36) += 
procedure m.locate(varm : m.coord); 

var i: integer; 
begin with m do 

with s.table[symbol] do 
begin if matrix = nil then m.new.axis(I, matrix); 
ptr[l] *— matrix; 
for i *— 2 to number.indices do 

begin if ptr[i - l]f [mr[t - l}].next.level = nil then 
m.new.axis(t,ptr[i - l]f[mt[» - l]].nexL/eue/); 

ptr\i] *- ptr[i - l]| [iat[i - I]].next.lev el; 
end; 

end; 
end; 

38. Accessing the entries of a matrix. 
We assume that m.locate has been applied, so that loc contains the proper pointers. 

We then need only use ptr [number.indices] to find the highest dimensional axis, and 
int[numbcr.indices] to find the proper entry in this axis. 

define m.access[t) = #.ptr[number-indices]][#.int[number.indices]].entry 

39. To keep track of which characteristic vectors have been computed, there is a global 
matrix of booleans called done.already. The next few modules implement this boolean 
matrix in a manner similar to the preceding modules. 

(Global types 8) += 
m.b.ptr = ]m.b.axis; 
m.b.axis — array [0 ., max.totat] of record case m.axis.type of 

interior: (next.level : m.b.ptr); 
exterior: (entry : boolean) 
end; 

40. Allocation and initialization of the boolean matrix axes. 

(Matrix procedures 36) += 
procedure m.b.new.axis[i: integer; vara : m.b.ptr); 

var j: integer; 
begin new(a); 
if » = number.indices tuen    { This is the highest dimension. } 

for j *— 0 to max.total do a|[j].entry *— false 
else     { This is an interior dimension. } 
for j *— 0 to max.total do a][j].next.level *— nil; 
end; 

gjü, oa 



114 A GENERAL-PUItrOSE GENERATOR OF COMBINATORIAL OBJECTS 

41.    Preparing to access the boolo-m matrix. 

(Matrix procedures 36) += 
procedure m.b .locate (varm : m.coord); 

var t: integer; 
begin with m do 

begin if done.already = nil then 
begin tn-b.new.axis (I,done.already); b.ptrs[l\ «- done.already; 
end; 

for t ♦— 2 to number.indices do 
begin if b.ptrs[i - l]t[«'ni[t - l}\.next.level = nil then 

m.b.new.axis(i, b_ptrs{i - l]{[int[i - l]].nexUevcl); 
b.ptrs\i] <- b.ptrs[i - l]][int\i - l\].next.Uvel; 
end; 

end; 
end; 

42. Accessing the entries of the boolean matrix. 

define m.b.access(#) = b.ptrs[nnmber.indices}^[n.int[nrimber.indices]].entry 

43. The boolean matrix is a global variable. There is also a global array of pointers to 
access the matrix. 

(Global variables 3) += 
done.already: m.b.ptr; 
b.ptrs: array [1 .. max.countable.terminah] of m.b.ptr; 
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44.    Selector Walk Structure and Construction Procedures. 
The walk structure is built by count using the procedures w.multiply, w.sum, w.build 

and w.single.multiply. It is used by walk to quickly generate a string specified by an integer 
selector. The total number of strings derivable from a node of the walk structure is recorded 
in the value field of the w.node. When walking the structure, selector should aways be in 
the range 0 .. value - 1. There are two types of nodes, trivial and drastic. The trivial 
nodes have left and right sons. They are formed by the summing process, and so the value 
field is the sum of the values of the two children. The walk procedure will turn either left 
or right at a trivial node. The drastic nodes are the result of the multiplication process. 
At a drastic node the walk procedure must (in an intertwined order): 
1) Output the terminal symbols in the production used, p.used, and 
2) Walk the structures for both the nonterminals, firs.walk and seco.walk. 

A w.ptr is a pointer to a w.node. The w.next field is used to link together nodes that 
have been summed until they are built into a balanced structure. 

define w.value(#) = tt].value 

(Global types 8) += 
w.type = (trivialy drastic); 
w.node = record value: integer; 

w.next: w.ptr; 
case state : w.type of 
trivial: (left, right : w.ptr); 
drastic: (split.factor : integer; p.used : p.ptr; firs.specials, seco.specials : integer; 

firs.walk,seco.walk : w.ptr) 
end; 
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45.     The multiply procedure 

The w.multiply procedure creates a drastic w.node. Tlie v;due field is essentially the 
product of the two value fields of the nonterminals in p.nsed, with the countable symbols 
divided according to fir.it.loc and sccondJoc. This product is modified by split-factor 
because of the exponential nature of the series in the special labelled character. For example, 
suppose X is the labelled character, and we are multiplying 

(?*£)(?**> 
then a typical term of the product will be 

A + A        Xi+J 

The split-factor plays the role of the binomial coefficient, although below we arc using the 
multinomial coellicients because there are really three contributions to the product: the 
number of A"s in the production itself, adjust [l]; the number of A"s in the first nonterminal, 
firsspc.cials; and the number of A'*s in the second nonterminal, secospecials. When the 
walk procedure traverses this w.nodc it will have a list of labels that it intends to assign 
to terminal X'». The split-factor counts the number of ways of dividing the list into three 
parts. If any of the three parts are "boxed" then 1 is subtracted from the corresponding 
index. Algebraically, this is a consequence of the shifting of the exponential series with the 
differentiation and integration operators. Combinatorially, this corresponds to fixing the 
location of the smallest label in the separation process. 

(Walk structure builders 45) = 

procedure w.multiply (var product : w.ptr; possibility : p.ptr; 
first Joe. secondJoe : rri-coord); 

begin with product], p.possibility] do 
begin p-used «- p.possibility; firsspecials <- first Joe.int[i\; 
secospecials — sccondJoc.int[l}; split-factor «- mult\adjust[l] - speciaLbxd, 

firsspccials - first Jixd. seco specials - second Jixd]; 
firs-walk «-• m.access (first Joe); seco.walk <- m.access[secondJoe); 
value «- split-factor * w.value(firs.walk) * w.value (seco.walk); w.next *- nil; 
end; 

end; 

Sec also sections 46, 47, and 48. 

This code is used in section 1. 
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46.    The multiply procedure with a single operand. 
The w.single.multiply routine is identical to w.multiply except that the production has 

only one nonterminal. 

(Walk structure builders 45) += 
procedure w.single.multiply (var product : w.ptr; p.possibility : p.ptr; first Joe : m.coord); 

begin with product ], p.possibility] do 
begin p.used «— possibility; firs.specials *—first Joe .int[l\; 
split.factor *- mult [adjust [1] - speciaLbxd, firs.specials - first.bxd,0]; 
firs.walk «— m.access(firstJoe); value «— split.factor * w.value (firs.walk); 
seco-specials «— 0; w.next «- nil; 
end; 

end; ■ : 

47. The sum procedure. 
The eventual purpose of the w.sum procedure is to produce a w.node with two descen- 

dents, left and right, and a value field equal to the sum of the values of the two descendents. 
However, in order to optimize the data structure for later walks, the w.nodes are first linked 
together by their w.next pointers in an accumulator list. Later on, the w.build procedure 
will create a tree. 

(Walk structure builders 45) += 
procedure w.sum(var accumulator : w.ptr; new : w.ptr); 

begin new].w.next *— accumulator; accumula».: «— new; 
end; 

48. A balanced tree builder. 
This procedure builds a balanced tree from a list by repeatedly combining the first two 

nodes and reinserting them at the end of the list. 

(Walk structure builders 45) += 
procedure w.build (var accumulator : w.ptr); 

var tail,joined: w.ptr; 
begin tail «— accumulator; 
while (tail].w.next ^ nil) do tail «- tail],w.next;    {Find the end of the list} 
while accumulator].w.next jt nil do 

begin new (joined, trivial); joined] Jeft *- accumulator; 
joined].right *— accumulator].w.next; 
joined].value «— accumulator].value + accumulator],w.next].value; 
tail ].w.next *- joined; tail «— joined; tail].w.next «— nil; 
accumulator «— accumulator].w.next].w.next; 
end; 

end; 
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49.     Counting Pi   cedurcs. 
The procedure count is called with a loc parameter that contains a nonterminal and a 

characteristic vector, indicating that the user desires an accounting of the derivations that 
start with the nontei rnhia! and have a final composition equal to the vector. 

If loc is not alre,- dy computed, the code below builds up a solution to loc by first 
computing all vectors with norm less than loc. In the loop below total ascends through norm 
sizes. For a fixed value of total the inner loop distributes total among the components of the 
characteristic vector target Joe, subject to the constraint that no component can exceed its 
corresponding component in loc. Thus we generate all target Joe's that are componentwise 
less than loc, in ascending order of their norms. 

define nextJotal = 10 
define next-production = 11 

(Counting procedures 49) = 
function count (loc : m.coord): integer; 

label nextJotal, next „production; 
var partial.sums: array [0 .. max.countable .terminals] of integer; 

chunk, i. col A, coL2. total, subJotal: integer; 
iarget.loc. delta.loc, first Joe, second Joe: m.coord; 
scan.productions: p.ptr; 
accumulator, new.drastic: w.ptr; 

begin m.b.locate(loc);    { Check donc.alre.ady to see if loc needs computing} 
if -•m.b.access (loc) then 

begin new (new.drastic, drastic); new.drastic \.w.next «- nil; 
subJotal <- 0; partial-sums [0] ♦- 0; 
for colA +- 1 to number.indices do 

begin subJotal <- subJotal + loc.int [col.l \; partial.sums[colA] «- subJotal; 
target Joe. int[colA] <— 0; 
end; 

for total *- 0 to partiaLsums[number.indices] do 
begin subJotal *- total; col.l *- number.indices; 
while true do 

begin while sub.Utal > 0 do    { Disperse subJotal leftwards } 
begin chunk *- min(sub.total, loc.int\colA\); target.loc.int[colA] «- chunk; 
subJotal *- subJotal - chunk; col.l «- col A - 1; 
end; 

(Compute all entries at target Joe 50) 
if subJotal = total then goto nextJotal; 
while (targetJoe.int[colA + 1] = ()) V (subJotal ~ partiaLsums[colA}) do 

{ Scan rightwards to find a column to diminish } 
begin col.l «- col.l + 1; subJotal <- subJotal + targeUoc.int[colA]; 
target Joe. int[col.l] *— 0; 
if subJotal - total then goto nextJotal; 
end; 

target Joe.int\col.l + 1] ♦- target.loc.int\colA + 1] - 1; subJotal *- subJotal + 1; 
end; 

nextJotal: end; 
end; 

la 
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count ♦- w.value (m.access (loc)); 
end; 

This code is used in section 1. 

50.    For a particular targetJoc, the code below scans the nonterminals in safe.order, and 
for each nonterminal it scans the production possibilities. 

(Compute all entries at targetJoc 50) = 
m.b.locate (targetJoc);    {Check done.already to see if targetJoc needs computing} 
if -im.b.access (targetJoc) then 

begin m.b.access(targetJoe) *- true; scan.safe.order *- safe.order; 
while scan.safe.order ^ nil do 

with scan.safe.order] do 
begin target Joe.symbol *- letter; mJocate (targetJoc); 
accumulator *— m.access (targetJoc); scan.productions *— s.table[letter].prods; 
while scan.productions £ nil do 

with scan.productions f do 
begin (Compute the effect of a particular production 51); 
scan.productions *- p.next; 
end; 

w.build (accumulator); m.access (targetJoc) *— accumulator; 
scan.safe.order «— c.next; 
end; 

end; 
This code is used in section 40. 
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51.    At this point wc arc ready to compute the contribution of a single production. 
Suppose the production is 

TV - XFAaGBGH 

and we are counting derivations that start with TV and have final composition (6,5, 2). The 
code below subtracts the adjust vector contained in the production possibility, (1 1 2) 
obtaining a delta Joe vector of (5,4,2). If the possibility has only one nonterminal,' then 
all of (5,4,2) must be contributed by this nonterminal.   Here, however, there arc two 
nonterminals, so (5,4,2) is divided in all possible ways, as described in the next section. 
(Compute the effect of a particular production 51) = 

with taryetJoc do 

begin     { Subtract the counts of characters for this scnn.productions from the totals } 
for i «— 1 to number.indices do 

begin delta Joe .int[i] *- int{i] - adjust [i]; 
if delta Joe.int[i] < 0 then 

goto nexLproduction    { There is no way to use this possibility } 
end; 

delta Joe. symbol «- sub.string[l\; mJocate (delta Joe); 
case sub-size of    { 0: possibilities without nonterminals are entered directly into 

the matrix } 
1: begin w.single. multiply (new.drastic, sran.productions, delta Joe); 

(If new.drastic is nonzero then add it to the accumulator 53); 
end; 

2: (Compute with two nonterminals 52); 
end; 

next-production: end; 
This code is used in section 50. 
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52. Computing the contribution of a production possibility with two nonterminals. 
The example of the preceding section has two nonterminals, A and B, in the production 

possibility that together must contribute (5,4,2) characters to the derived string. The 
code below divides delta Joe (which is (5,4,2) in this example) into first Joe and second Joe 
by a counting mechanism. For each partition, the number of strings derived from A is 
multiplied by the number of strings derived from D, and the results of all partitions are 
summed together. Multiplication and summation are performed by w.multiply and w.sum, 
which are closely related to ordinary multiplication and addition, but take into account the 
exponential nature of the generating function and the construction of the walk structure. 

The code below is the inner loop of the program. 

(Compute with two nonterminals 52) = 
begin first Joe «— delta Joe; second Joe .symbol <— 3«6.afrinff[2]; 
for i«— 1 to number .indices do second Joe .int\i] *— 0; 
mJocate(sccondJoc); w.multiply (new.drastic, scan.productions, first Joe, secondJoe); 
(If new.drastic is nonzero then add it to the accumulator 53); 
coL2 «— number.indices; 
while col.2 > 0 do 

begin fust Joe. int[col.2] *- firstJoe. int[coL2] - 1; 
if first Joe. int{col.2] < 0 then 

begin first Joe. int[coL2\ <— delta Joe .int\col.2\; second Joe. int[coL2] *— 0; 
col.2 *- col.2 - 1; 
end 

else Degin second Joe .int[col.2] *— secondJoe .int[col.2] + 1; 
if col.2 < number.indices then 

begin m.locate(firstJoe); mJocate(secondJoe); 
end; 

w.multiply (new.drastic, scan.productions, first Joe, secondJoc); 
(If new.drastic is nonzero then add it to the accumulator 53); 
col.2 *— number.indices; 
end; 

end; 
end 

This code is used in section 51. 

53. Relevant new.drastic nodes arc added to the walk structure. 

(If new.drastic is nonzero then add it to the accumulator 53) = 
if new.drastic \ .value ^ 0 then 

begin w.sum (accumulator, new.drastic); new (new.drastic, drastic); 
new.drastic],w.next *— nil; 
end 

This code is used in sections 51, 52, and 52. 
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54.     Addendum to the grammar loading code.    Here wc define variables for the next 
module. 

{Local variables for loading matrix entries 54} = 
loc: m.coord; 
new.drastic, already: w.ptr; 
This code is used iu section 11. 

5/>.    When a production is free of nonterminals, it is entered directly into the entry of 
thr matrix for the nonterminal on the left side of the production. The code below fits in 
•-1C context of a with p.possibility do. The adjust array of the p.possibility describes the 
makeup of the production; so it is used to address the matrix. 

(Enter a string of all terminals 55) = 
with loc do 

begin symbol «- leftside; 
for t ♦-- 1 to number .indices do int[i] «- adjust[i]\ 
mJocate(loc); ncw(new.drastic, drastic); 
with new.drastic \ do 

begin value «- 1; w.next <- nil; split-factor *- 1; p.used *- p.possibility; 
firs.specials «— 0; scco.spectals *- 0; 
end; 

already *- m.access(loc); w.sum(already, new.drastic); m.access{loc) «- already; 
end 

This code is used in section 19. 

56. Label Lists. 
Now we have completed the procedures that build the data structures, and we are ready 

to use them. The top level call to the walk procedure begins with a list of the integers 
1 .. n. Subsequent calls to walk will have fragments of this list, the fragmentation being 
performed by the split procedure. Eventually each integer in the list will become a label 
for one of the special characters. 

(Global types 8) += 
Lptr - jUist; I.list - record lab: integer; 

Lnext: Lptr; 
end; 

57. Append a label to the end of the list, using the pointer Lend to quickly find the last 
item of the list. 

(Global procedures i) += 
procedure Läppend(var Lbegin, Lend, new : Lptr); 

begin if Lbegin — nil then Lbegin «- new 
else Lend],Lnext <— new; 
new\.Lnext «- nil; Lend «- new; 
end; 

;   ) 
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58.    Procedures to Walk and Produce a String. 
According to the value of selector, the procedure split separates a list of labels, i, into 

three lists, ol, o2, and oS with sizes nl, n2, and nS. The multinomial coefficients govern 
the splitting process. 

(Walking procedures 58) = 
procedure split (i: l.ptr; selector, nl tn2,nS : integer; \aroi,o2,o$ : l.ptr); 

var cur, ol.eni, o2.end, oS.end: Lptr; 
begin ol *— nil; o2 *- nil; oS «— nil; 
while t / nil do 

begin cur *- i; i «— i^.l.next; 
if selector < mult\nl - l,n2,nS] then 

begin Lappcnd(ol, cl.tnd, cur); ni «— ni - 1; 
end 

else begin selector *— selector - mult[nl - l,n2,nS]; 
if selector < mult[nl,n2 - l,nS] then 

begin Lappend(o2, o2.end, cur); n2 «— n2 - 1; 
end 

else begin selector ♦— selector — mult[nl,n2 — l,n5]; 
if selector < mult[nl,n2,n8 - 1] then 

begin /-ap/jen<f(o5,o5.end,cur); n5 ♦— nS - 1; 
end 

else write(tty, 'Error:uselectoruinappropriateuinusplituprocedure."); 
end; 

end; 
end; 

end; 
Sec also section 59. 

This code is used in section 1. 
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59.     The actual walking procedure. 

The walk procedure traverses a data structure that is prepared by other portions of the 
program (count, w.sum. w.multiply ). The purpose of walk is to generate a string from 
the grammar; selector specifies the string to be generated, and labels is a list of integers 
that are to be attached to the occurrences of one particular terminal symbol. 

The wall, procedure first dispenses with the trivial nodes by branching left, except when 
selector is larger than the value of the left son, in which case the left value is subtracted 
from selector and the right branch is taken. 

Eventually a drastic node is reached - these arc processed in the next module. 

(Walking procedures 58) + = 

procedure walk [cur : w.ptr; selector : integer; labels : l.ptr); 
var share, so .far, i: integer; the.box,specJabel,firs.labels,seco.labeh: Lptr; 
begin while cur].state = trivial do 

if selector < cur].left Rvalue then cur *- cur].left 
else begin selector <- selector - cur].left].value; cur *- cur].right; 

end; 
with cur], cur].paused] do 

if value > 0 then  (Traverse a drastic node 60) 
end; 

60. A drastic node indicates that a production is to be applied, so the procedure must 
divide the labels between the special character and the nonterminals in the production. 
Part of selector is removed (by mixed-radix arithmetic) and used to govern the division 
process. If anything is boxed then the smallest label is stripped from the beginning of the 
list, saved in the-box. and then returned to the appropriate list after the split procedure 
divides the labels. 

(Traverse a drastic node 60) = 

begin if bxd > 0 then    { Remove the smallest label} 
begin the.box *~ labels; labels «- labels].Lnext; 
end; 

split (labels, selector mod split.factor, adjust\l] - special.bxd ,firs.specials - first.bxd, 
seco.specials - second.bxd, spec.labcl, firs.labcls, seco.labels); 

selector *— selector div split.factor; 
(Put the smallest label into the appropriate list 61); 
(Output the selected string 62); 
end; 

This code is used in section 59. 
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61. The smallest label, the.box, is linked at the begining of the list corresponding to the 
box operator in the production. 

(Tut the smallest label into the appropriate list 61) = 
if spccial.bxd > 0 then 

begin thc.box \.Lntxt <— nil; spec.label «— the.box; 
end; 

if first-bid > 0 then 
begin the.bnx].l.next «— firsJabcls; firs.labels *-- iUe.box; 
end; 

if second-bid > 0 then 
begin the.box^.l.next — ieco.labels; secoJabels *— the.box; 
end; 

This code '> used in section 60. 

02. With the labels ready, the code below scans the production, outputting terminals and 
calling itself recursively for the nonterminals. The original selector is divided into three 
parts, one part to control the split procedure (as we saw above) and two parts to give to 
the recursive calls on the nonterminals in the production. 

(Output the selected string 62) = 
sojar «— 0; 
for t«— 1 to size do 

case 3-tab[e[string[i]].status of 
uncountJerm, count.term: if srrmj[t] / 'E' then write [tty,string[i], 'u*)> 
labelled: begin write(tty, string[i],specJabel].lab : 0, "u*)> 

end; 
nonterm: case so Jar of 

0: begin share *— w.value (firs.walk); 
walk(firs,walk, selector mod share, firs.labels); so.far *— 1; 
end; 

1: walk(seco.walk, selector div share, seco.labels); 
end; 

end; 
This code is used iu section 60. 
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63. Interacting with the usrr. Tlio help procedure prints information for the user 
by reading from the lUe help.tit and printing the contents on the tty. Parameters that are 
easy to change axe described at the end of the help message. 

(Command processing 63) = 
procedure help; 

begin reset (help.file, 'HELP.TXT[1 ,DHG] '); 
repeat reailln{help..file, Lbuffcr : i.line.size); writeln(tty,Lbuffer : iMne.size); 
until eof (help file); 

writeln(tty.buffer size : 0, 'ucharactersuonuaulineuofuinput'); 
writcln(tty, max.prod symbols : 0, 'uSymbolsuinuauproductionupossibility'); 
writclu(tty, max.conntahle-terminals : 0, 

"usymbolsuthatuareucriticalutoutheucounting'); 
u>riteln(tty, mnxAotal : 0, 

'utotriluoccurrencesuofueachucriticalusymboluinutheuderivedtjstring'); 
end; 

See also section 64. 

This code is used in section 1. 
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3 

64.    Command Line Processor. 
This procedure consists of three nested loops at three different levels of the command 

line processor. The outside loop prompts with >, and the label new.command marks the 
end of this loop. The inner loops appear in subsequent modules. 

With a few exceptions, the command line processor ignores all but the first letter of a 
line of input. 

define quit = 5 
define new-command — 6 
define new.size = 7 
define new.selection = 8 

(Command processing 63) + = 
procedure commands; 

label quit, new.size, new.command,new.selection; 
var i, column, selector: integer; c: char; loc: m.coord; 

limit, start .time, heap.bottom: integer; labels, new .label: Lptr; 
begin writeln(tty); 
writeln(tty, 'Pleaseuuseucapitals .uTheuHELPuCommanduprintSijinstructions.'); 
mark( heap.bottom); 
while true do 

begin writeln(tty); write{tty, "Comraand>u"); i.line(lrue); 
case i-bujfer[l] of 
'H': help:    { Help command } 
'G":      { Grammar command } 

begin for c «— 'A* to 'Z' do sJable[c].status «— undefined; 
release (heap.bottom); loading.grammar;  done.already «—nil; 
end; 

'S": (Process a size command 65); 
'U': goto quit;    { Up command } 
others: writeln(tty, 'Error:uunrecognizeduCommand') 
end; 

new.command: end; 
quit: end; 

vj 

65.     Here is the middle loop, it prompts for various structure sizes. 

(Process a size command C5) = 
while true do 

begin (Prompt for the start symbol and the characteristic vector desired 66); 
start.time *— runtime;    { The user's request is in loc } 
m.locatr(loc); writeln(tty, 'Thereuareu", count(loc): 0, 'ustructures'); 
writcln(tly. 'Runtime:u', (runtime - start.time) : 0, "umsecuofuCPU'); 
if count(loc) > 0 then (Walk through selected strings until the user types UP 67); 

new.size: end 
This code is us«] in section 64. 
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66.     The user specifics a starting symbol for the derivation, and gives the desired distri- 
bution of characters for the terminal string. 

(Prompt for the start symbol and the characteristic vector desired Co) = 
writeln(tty); write((ty. "StartuNonterminal»u");  i.line(true); 
if (Lbuffer\\\ = "U") A [i.bujfer[2] = "P") then goto new.command; 
if s.table[i.bnjfcr\l}].status y£ nontcrm then 

begin writcln(Uy, "Error:u", i.6u^er[lj, "ushouldubeuaunonterminal-); 
goto new.size; 
end; 

loc.symbol *- i.buffer[l]; 

writcln(tly. 'Numberuofuoccurrencesuofu(Limitu=u-, maxJotal : 2, ') '); 
for »' «— 1 to number.indices do 

begin write (tty, index.symbols\i], '-'s»u');  read (tty, loc.int[i]), 
while (loc.int[i\ < 0) V (loc.int[i] > maxAotal) do 

begin write (tty. "Error :ulimitu=u", maxJotal : 0, '.utryuagainu. . .u'); 
read (tty. loc. int[i}); 
end; 

end 

This code is used in section 65. 

67.    Here is the innermost loop; the user supplies an integer identifying a particular 
structure, or makes a RANDOM request. 

{Walk through selected strings until the user types UP 67) = 
begin while true do 

begin labels +- nil; limit *- loc.int[l\; 
for i «- 1 to limit do 

begin new(newAabel): newJabelllab <- limit - t + 1;  new.label }.l.next <- labels; 
labels <— new.label; 
end; 

writ ein (tty): writeln(tty. 'WhichuoneuWoulduyouulike?'); 
writeltty. "Enteru[Ou. .un-lDuoruRANDOM»^"); i.line(false); 
case Lbuffer[l] of 
"U": goto new.size:    {Up command} 
"R":      { Random command } 

begin li'alk(mjiccess(loc), trunc(random(D) * w.value(m.access(loc))) Jubels)- 
end; 

others: (Select a particular structure 68) 
end; 

new ^selection: end; 
end 

This code i* used in section 65. 
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68.    The user has requested a specific structure by number. 

1 

(Select a particular structure 68) = 
i begin     { Convert the contents of {.buffer to a number } 

column *— 1; selector +— 0; 
while column < iJine.sizc do 

begin if ->(i-buffer[column] e ['0' .. '9']) then 
begin writeln(tty, 'Erroriunumeraluorucommanduexpected'); 
goto new.selection; 

-   - end; 
selector *— selector * 10 + ord({.buffer[column]) — ord('O'); column *— column + 1; 
end; 

if (selector > 0) A (selector < count(loc)) then walk(m.access(loc), selector, labels) 
i else tw»te/n(ttj/, "Erroriuselectionuoutuofurange');                                                                                  | 

end 
'' This code is used in section 67. 
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Sample Execution 

The preceding program executes as follows: 

Please use capitals. The HELP command prints instructions. 

Comraand> HELP 

Level in the command line processor is indicated by the number of > signs 
following a prompt. At any level, the UP command shifts the system to a 
higher level. A summary of top level commands follows: 
>HELP Print this file 

>UP Exit from the program 

>GRAMMAR      Accept a grammar from the user 
>SIZE        Accept a specification from user for the size of objects to 

be counted, selected, or generated at random. 

After a GRAMMAR command, the program asks for a classification of input 

letters. Letters can be designated as:  1) The special labelled character. 

2) Terminals that are not labelled, but figure in the specification of the 

problem size. 3) Terminals that will be ignored in the counting, but 

printed in the final result.  4) Nonterminals. At each prompt the user 

supplies one or more letters, separated, if desired, by spaces or commas. 
E is the built in empty string.  It should not be redefined. 

Following the declaration of letters, the program will ask for 

productions. It expects a vertical bar to separate production 

possibilities, and an up arrow to indicate a box superscript. The UP 

command, when issued at the beginning of a line of input, returns the 
program to its top level. 

In response to a SIZE command, the program asks the user for a start 

nonterminal and then the number of occurrences of the special character and 

each of the terminals declared to be important to the specification of 
problem size. It reports the results of the counting and then asks the 

user to select a particular object. The user can supply an integer or use 
the RANDOM command for less predictable results. 

Here is a sample program execution for labelled trees: 

•A 

Please use capitals. The HELP command prints instructions. 

Command> GRAMMAR 

i'i 

Labelled Character» X 

Counted Terminal(s)» 

Uncounted Terminal(s)» L. H 

Nonterminal (s)» ST 
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Production» T+XS 
Loaded: T •* X S with boxed position 0 
Production» S + L T" H S I E 
Loaded: S + L T H S with boxed position 2 
Loaded: S ■» E with boxed position 0 
Production» UP 

The following nonterminals can derive pseudo empty strings: S 
The safe order is: T S n 

Command> SIZE 

Start Nonterminal» T 
Number of occurrences of (Limit 
X's» 3 
There are 9 structures 
Runtime: 3 msec of CPU 

12) 

•■■* 

Which one would you like? 
Enter [0 .. n-1] or RAND0M>» 0 
XI L X2 H L X3 H 
Which one would you like? 
Enter [0 .. n-1] or RAND0M>» 1 
X2 L XI H L X3 H 
Which one would you like? 
Enter [0 .. n-1] or RAND0M>» RANDOM 
X2 L XI H L X3 H 
Which one would you like? 
Enter [0 .. n-1] or RAND0M»> UP 

Start Nonterminal» T 
Number of occurrences of (Limit ■ 12) 
X's» 10 
There are 1000000000 structures 
Runtime: 12 msec of CPU 

Which one would you like? 
Enter [0 .. n-1] or RAND0M»> R 
XI L X3 L X9 L X8 L X4 L X7 L X5 L X10 L X2 H H H H H L X6 H H H H 
Which one would you like? 
Enter [0 .. n-1] or RAND0M>» UP 

Start Nonterminal» UP 

W 
U 
:■><- & 
fc:3 
ih ■ 

m 
m 

ss8 
«9 

1 
m 

m 

Command> UP 

Exit 
If 

m 

I 
is a 
I 
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-c 

The following limits are built into the program: 
1 special labelled character in a production possibility. 
2 nonterminals in a production possibility. 

The following limits can be modified by recompilation: 
140 characters on a line of input 
7 symbols in a production possibility 
3 symbols that are critical to the counting 
12 total occurrences of each critical symbol in the derived string 

■Qä 

«$> 
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f.    :: 

The next example uses a grammar to encode Fibonacci sequences. These are string3 
•' 

of + (PS) and - (MS) signs having no consecutive minus signs. 
.'. 

Commando GRAMMAR 
;.    <•; 

Labelled Character» ■•    I 

fv] Enter a single labelled character (dummy if necessary)   ...  Z :    -j 

Counted Terminal(s)» S i 

U  i Uncounted Terminal(s)» P M :    i 
, y                         Nonterminal(s)>> A B I    ■': 

. ... 

Production» A ♦ PS A  1 MS B  |  E f."        ";; 

Loaded:    A ■» P S A    with boxed position 0 
Loaded:    A ■» M S B    with boxed position 0 1    1 

:,     ,-) Loaded:    A ■* E    with boxed position 0 rL      | 

Production» B + PS A  1  E ...» 
i.' _   ,{ Loaded:    B ♦ PSA   with boxed position 0 ?■    ■'? 

;'■■    -i Loaded:    B ■» E   with boxed position 0 '       1 

•'   J Production» UP ? . . : .3 

The following nonterminals can derive pseudo empty strings:    A B v ' i 

• 1 
The safe order is:    AB 

'i'    ■"■:'- 

!    i 
Command> SIZE 

■ Start Nonterminal» A fy% 

Number of occurrences of  (Limit = 12) 
.'-■jß Z's» 0 0-.\yM 

S"s» 2 
There are 3 structures 
Runtime:  3 msec of CPU 

.-"' -u, 

Which one would you like? 
Enter  [0  ..  n-1]  or RANDCM>» 0 

j 

P S P S ■■■■   v>i 

tea 

il Pi 

Which one would you like? 
Enter  [0  ..  n-1]  or RAND0M>» 1 
P S M S 
Which one would you like? 

- 

: ' Enter  [0  ..  n-i]  or RAND0M»> 2 ■ 

I'm m M S P S V0.vAs 

"'<H Which one would you like? /   ]\ 

\:4 

Enter  [0  ..  n-1]  or RAND0M>» UP 
\ 

Start Nonterminal» A 
Number of occurrences of  (Limit a 12) 

'■■', ''•'-% 

Z's» 0 ^],_ :•■;$ 

f-'S 
^ "1 

S'e» 3 

;; 

pi 

\ 

/* 
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There are 5 structures 
Runtime:   1 msec of CPU 

Which one would you like? 
Enter  [0  ..  n-1]  or RANDOM»> UP 

Start Nonterminal» A 
Number of occurrences of  (Limit « 12) 
Z's» 0 
S's» 4 
There are 8 structures 
Runtime: 2 msec of CPU 

Which one would you like? 
Enter [0 .. n-1] or RAND0M»> UP 

Start Nonterminal» UP 

IKsS 
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This last grammar counts unordered, labelled trees according to their leaves and single 
descendant nodes. Leaves arc marked with an A, and single descendents arc marked with 
aB. 

Command?- GRAMMAR 

Labelled Character» X 
Counted Terminal(s)» A B 
Uncounted Terminal(s)» L H 
Honterminal(s)>> S T M 

Production» T + X S 
Loaded: T ■* X 
Production» s 
Loaded: S ■» A 
Loaded:  S ♦ B 
Loaded: S ■» L 
Production» M 
Loaded: M ■» L 
Loaded: M + L 

S    with boxed position 0 
•»AIBLTHILT-HM 
with boxed position 0 

L T H    with boxed position 0 
T H M    with boxed position 2 
♦ L T H  I  L I* H H 
T H   with boxed position 0 
T H M    with boxed position 2 

Production» UP 

The following nonterminals can derive pseudo empty airings: 
The safe order is:    S T M 

Command> SIZE 

Start Nonterminal» 3 
Error:  capital letter(s)  expected,  try again 
Number of occurrences of  (Limit - 12) 
X's» 3 
A'*» 2 
B's» 0 
There are 
Runtime: 

. T 

3 structures 
56 msec of CPU 

Which one would you like? 
Enter [0  .. n-1]  or RAND0M>» 0 
XI L X2 A H L X3 A H 
Which one would you like? 
Enter [0 .. n-1] or RAND0M>» 1 
X2LX1AHLX3AH 
Which one would you like? 
Enter [0 .. n-1] or RAND0M>» 2 
X3 L XI A H L X2 A H 
Which one would you like? 
Enter [0 .. n-1] or RAND0M>» UP 

:J ■ 

IM 

V 
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Start Nonterminal» T 
Number of occurrences of   (Limit. ■ 12) 
X's»  8 
A's» 4 
B's» 3 
There are 58800 structures 
Runtime: 2382 msec of CPU 

Which one would you like? 
Enter [0 .. n-1] or RANDOM»> RANDOM 

X8BLX7LX3BLX1BLXSAHHHLX2AHLX4AHLX6AHH 
Which one would you like? 
Enter [0 .. n-1] or RAND0M>» UP 

Start Nonterminal» UP 

Command> UP 

Exit 
-c 



APPENDIX D 

AN EXAMPLE OF POLYA-RLDFIET,D ENUMERATION 

1. Enumeration under the Cyclic Group. This program reads a number n from 
the user's terminal, then outputs all sequences of zeros and ones of length n that are distinct 
under the cyclic group. Each vector output is lexicographically largest in its equivalence 
class, and the vectors are output in decreasing lexicographic order. For example, when 
n = 4, the outputs arc 1111, 1110, 1100, 1010, 1000, 0000. The program also reports 
the number of distinct elements found, which can be checked against Polya's enumeration 
formula: 

Here <f>(i) is Euler's phi function; it counts the number of integers less than i that are 
relatively prime to i. 

This program is efficient in that it doesn't scan the entire set of 2n vectors of zeros 
and ones. Instead, the progrum uses an "incorrect" block move instruction to skip over 
large pieces of the set. One nice consequence of this organization is that the test to reject 
unwanted vectors is relatively simple (see module "Test and output if good" below). 

define max.aize = 30 
define quit = 10 

program cydie(tty, output); 
label quit; 
type small-integer = 0 .. max.size; 
var (Variables used by the program 2) 

begin while true do    { The program will solicit numerous problem sires } 
begin writc(tty, 'PleaseuEnteruProblemuSizeuj'); rcad(tty,n); 
(Doit for n 3); 

quit: writeln(tty, "TotaluNumberuOfuVectorsuFoundu^'jWnt : 3, 
'uu<ctr>Cu&u.finishutouseeufile"); 

writeln(output, 'Nu
a*,n : 4, "uuuCountus,u") count : 3); 

end; 
end. 

»J 
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2.    The only data structure is an array rector of boolean* winch the user perceives as an 
array of 0/1. 

(Variables used by the program 2) E; 

n: small .integer;    { n, the problem .size, is read from the terminal } 
»': small.integer;    { i is a .scratch variable, used for it    ation.s through vector } 
vector: array {smalUnteger) of boolean:    { tiie boolean? will be printed as zeros or ones } 
reset: small, integer;    {the location of the rightmost true in vector } 
ncxt.to.ropy: smalUnteger;    {the next boolean in vector to be copied } 
count: integer:    { counts number of inequivalent vectors found } 
Tins rode is used in section 1. 

u 3. The central loop of the program scans the array for the rightmost, one, resets this one 
to zero, and then copies the beginning of the array into the positions following the reset 
one. Tins operation is likely to generate an isomorphically distinct vector of zero? and ones. 
(Do it for n 3) = 

count «— 0; 

for t <- 0 to n do vector[»] «- true; 
(Print the array 4); 
vector [n] «- false;    { Hereafter the last position in vector is fixed at zero } 
(Print the array 4); 
while true do 

begin (Find the rightmost one and reset it; goto quit if all zeros 5); 
(Copy from the beginning of the vector to the zeros after reset 6); 
(Test and output if good 7); 
end; 

This code is used in section 1. 

4. Convert the boolean array vector to 0/1 and print the array in output. 
(Print the array 4) = 

begin for t «- 1 to n do 
if vector\i\ then wrjje('l') 
else write('O'); 

count <- count +1; wrileln; 
end; 

This code is used in sections 3, 3, and 7. 

5. The rightmost one in vector is set to u.,. The variable reset points to the changed 
location. When veetor[l .. n] is all zero, the otherwise useless one entry at vector[0] force* 
an exit. l ' 

(Find the rightmost one and reset it; goto quit if all zeros 5) = 
reset ♦— n; 

repeat reset «— reset - 1; 
until veetor\resel\; 
if reset = 0 then goto quit; 
vector \re.setj ♦- false; 

This code is used in section 3. 

/ 

||j£^ij££jj£jj|jjp 
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m 

■'i 

NIT 'i 
>;• 

6. This is a block move instruction with origin 1 and destination reset + 1. It works 
"incorrectly" in the sense that the origin area may overlap the destination area; since the 
direction of copying is forward, one entry may be replicated several times. This is precisely 
the behavior desired for the algorithm. 

(Copy from the beginning of the vector to the zeros after reset 6) = 
nextJo.copy *- 1; t«— reset + 1; 
while i / n do 

begin vector [i] <- vector [next.to.copy]; i *-% + 1; nextJo.copy «- next.to.copy -f 1; 
end; 

This code is used in section 3. 

¥ 

". The newly created vector is "good" if the next item in line for copying is one. This 
item would normally land in the last entry of vector, which is permanently fixed at zero, so 
we know that the first part of vector is lexicographically larger than the portion of vector 
following reset. 

In special cases we allow the next item in line for copying to be zero. This corresponds 
to non-prime n where there is a repeated pattern in the array. The mod below checks for 
this posibility. 

{Test and output if good 7) = 
if vector [nextJo.copy] V (n mod reset = 0) then 

begin (Print the array 4) 
end; 

This code is used in section 3. 

m 
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